Why the difference? The discrepancy in findings between these studies is likely due to the initial training status and base testosterone levels of the subjects. While more research is warranted on this ingredient, D-AA is one of several ingredients suggested to be effective in boosting test levels, especially for older men whose natural testosterone levels have declined due to the natural course of aging.

If you do take DAA I recommend cycling it (i.e. 5 days on, 2 off, over 4 weeks then 4 weeks off). And taking it with an aromatase inhibitor (which ensures the aspartic acid doesn’t get converted to estrogen). Especially as more studies are coming out showing the increase in testosterone is limited to a week or two before it drops back to normal levels.
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
Since then there have been many publications documenting suppressed testosterone and gonadotropins (Daniell 2006) in men using opioid medications whether these agents were administrated orally (Daniell 2002) or intrathecally (Finch et al 2000). Not only do opioids act centrally by suppressing GnRH, they also act directly on the testes inhibiting the release of testosterone by Leydig cells during stimulation with human chorionic gonadotropin (Purohit et al 1978). Although the large majority of men (and women) receiving opioids do develop hypogonadism, about 15 percent also develop central hypocorticism and 15 percent develop growth hormone deficiency (Abs et al 2000).
However, if you have normal testosterone levels and are looking for a boost, for strength gaining purposes, then D-Aspartic acid use may prove less fruitful. A study published in Nutrition Research showed that when the booster was given to men who resistance trained four times a week, their body composition and muscle strength was no different to men who took part in resistance training without the aid of D-Aspartic acid.
It is important not to use any DHEA product without the supervision of a professional. Find a qualified health care provider who will monitor your hormone levels and determine if you require supplementation. Rather than using an oral hormone supplementation, I recommend trans-mucosal (vagina or rectum) application. Skin application may not be wise, as it makes it difficult to measure the dosage you receive. This may cause you to end up receiving more than what your body requires.
In the U.S., where millions watch the Super Bowl simply to see the clever and costly commercials, and where pharmaceuticals with potentially deadly side effects are pushed on the public at every turn, it's probably not surprising that ads for "Low T" are now splayed across billboards in Florida, with its huge number of older residents, or that a chain of "Low T Centers" has sprung up in Texas and around the heartland.

Fenugreek, which is scientifically known as Trigonella foenum-graecum, is a popular medicinal herb used in India and areas of the Middle East. Studies on fenugreek suggest that it can increase testosterone levels by acting as an aromatase inhibitor. Aromatase is the enzyme responsible for converting testosterone into estrogen. Studies show that subjects supplementing fenugreek experienced a boost in testosterone as well as reduced fat loss and increased strength and muscle mass.
Because of inconclusive or conflicting results of testosterone treatment studies reported in the literature, Rabkin and colleagues (2004) undertook a comparison study among testosterone, the anti-depressant, fluoxetine, and placebo in eugonadal HIV positive men. They found that neither fluoxetine nor testosterone were different from placebo in reducing depression, but that testosterone did have a statistically significant effect in reducing fatigue. It is note-worthy that fatigue was reduced with testosterone treatment even though virtually all the men in the study had testosterone levels within the reference range.
Likewise, the amino acids in a protein-rich diet play a big role in both testosterone and muscle growth. As Chris Lockwood, Ph.D., explains, "When combined with training, which increases the sensitivity of androgen receptors, and the consumption of essential amino acids necessary to support protein synthesis, the effects of testosterone on muscle and performance is significantly amplified."[3,4]
Fenugreek is often found in Indian, Turkish, and Persian cuisine. Multiple studies have found it to improve testosterone levels, and in particular, sexual performance. Scientists at Babu Banarasi Das University and King George’s Medical University in India have found that fenugreek improved testosterone levels. Testosterone levels increased for 90% of the volunteers, sperm morphology (the size and shape of sperm) improved for 14.6%, and more than 50% of volunteers experienced improvements in mental alertness, mood, and libido.

Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).

Intracoronary artery infusion of testosterone causes significant coronary artery dilatation and not constriction as previously thought (Webb et al 1999). When degree of coronary obstruction is assessed by angiography, there is a direct relationship between degree of coronary artery narrowing and reduced testosterone levels (Phillips et al 1994). Men with low testosterone levels have been observed to have: premature atherosclerosis, increased visceral adipose tissue, hyperinsulinemia, and other risk factors for myocardial infarction (Phillips 2005). Insulin resistance has been shown to be associated with a decrease in Leydig cell secretion of testosterone (Pitteloud et al 2005). Muller and colleagues suggest that low endogenous total testosterone and SHBG levels increase the risk of metabolic syndrome in aging and aged men. They demonstrated that low levels of testosterone are related to lower insulin sensitivity and higher fasting insulin levels (Muller et al 2005). These authors speculate that testosterone might play a protective role in the development of metabolic syndrome, insulin resistance, diabetes mellitus and cardiovascular disease in aging men.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Growth of spermatogenic tissue in testicles, male fertility, penis or clitoris enlargement, increased libido and frequency of erection or clitoral engorgement occurs. Growth of jaw, brow, chin, and nose and remodeling of facial bone contours, in conjunction with human growth hormone occurs.[21] Completion of bone maturation and termination of growth. This occurs indirectly via estradiol metabolites and hence more gradually in men than women. Increased muscle strength and mass, shoulders become broader and rib cage expands, deepening of voice, growth of the Adam's apple. Enlargement of sebaceous glands. This might cause acne, subcutaneous fat in face decreases. Pubic hair extends to thighs and up toward umbilicus, development of facial hair (sideburns, beard, moustache), loss of scalp hair (androgenetic alopecia), increase in chest hair, periareolar hair, perianal hair, leg hair, armpit hair.

The science backs up the soldier’s self discovery, in fact, exposure to radiation (whether it’s from an army radar or the cell phone in your pocket, or the wifi router in your house) has been shown to lower sperm quality, fertility and testosterone. This is true not only for military personnel (88, 89,90) but all males living in a modern world (91).


There are no studies showing its effects on healthy males, but it has been shown to drastically improve testosterone in infertile males (ref 77). It's also packed full of minerals, so is a great superfood nevertheless. I use the Sunfoods brand. Make sure you buy from a quality brand, as there are a lot of poor shilajit products out there, also some have been shown to be high in heavy metals. 
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Regardless of the method of testosterone treatment chosen, patients will require regular monitoring during the first year of treatment in order to monitor clinical response to testosterone, testosterone levels and adverse effects, including prostate cancer (see Table 2). It is recommended that patients should be reviewed at least every three months during this time. Once treatment has been established, less frequent review is appropriate but the care of the patient should be the responsibility of an appropriately trained specialist with sufficient experience of managing patients treated with testosterone.
The effect excess testosterone has on the body depends on both age and sex. It is unlikely that adult men will develop a disorder in which they produce too much testosterone and it is often difficult to spot that an adult male has too much testosterone. More obviously, young children with too much testosterone may enter a false growth spurt and show signs of early puberty and young girls may experience abnormal changes to their genitalia. In both males and females, too much testosterone can lead to precocious puberty and result in infertility. 
×