^ Mehta PH, Jones AC, Josephs RA (Jun 2008). "The social endocrinology of dominance: basal testosterone predicts cortisol changes and behavior following victory and defeat" (PDF). Journal of Personality and Social Psychology. 94 (6): 1078–93. CiteSeerX 10.1.1.336.2502. doi:10.1037/0022-3514.94.6.1078. PMID 18505319. Archived from the original (PDF) on April 19, 2009.
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.

Sergeant Steel ran into trouble here because it contains Shilajit — a type of plant-based resin. Shilajit is banned in Canada because the Canadian government found heavy metal levels when investigating the ingredient. Shilajit is hard to find, and sensitive to water and variations in temperature, so most manufacturers mix it with additives to make it more stable. Research at Boston University School of Medicine found that “nearly 21 percent of 193 ayurvedic herbal supplements [...] contained lead, mercury or arsenic,” and included shilajit on the list of contaminated ingredients. Even though Sergeant Steel lists its shilajit is “purified,” it doesn’t offer any third-party testing to confirm whether or not their shilajit contains heavy metals, and so we cut it.


A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.
Commercials do mention other potential side-effects for the male user, calling them "rare," including swollen and painful breasts, blood clots in the legs, increased risk for prostate cancer, problems breathing during sleep (sleep apnea), change in the size and shape of the testicles, and a low sperm count. But you're not supposed to focus on the details. Instead, just think of the energy you'll have. The great sex you'll have. And the muscles. It will be a veritable second adolescence as your aging body bursts into new bloom.
The sex hormone testosterone is far more than just the stuff of the alpha male's swagger. Though it plays a more significant role in the life of the biological male, it is actually present in both sexes to some degree. Despite popular perceptions that testosterone primarily controls aggression and sex drive—although it does play a role in both of those things—research has shown that individual levels of testosterone are also correlated with our language skills and cognitive abilities. Testosterone occurs in the body naturally, but can be administered as a medication, too: its most common uses are in the treatment of hypogonadism and breast cancer, as well as in hormone therapy for transgender men.
As blood levels of testosterone increase, this feeds back to suppress the production of gonadotrophin-releasing hormone from the hypothalamus which, in turn, suppresses production of luteinising hormone by the pituitary gland. Levels of testosterone begin to fall as a result, so negative feedback decreases and the hypothalamus resumes secretion of gonadotrophin-releasing hormone. 
Inaccurate or misinterpreted test results can either falsely diagnose or miss a case of testosterone deficiency. Your testosterone level should be measured between 7 am and 10 am, when it's at its peak. Confirm a low reading with a second test on a different day. It may require multiple measurements and careful interpretation to establish bioavailable testosterone, or the amount of the hormone that is able to have effects on the body. Consider getting a second opinion from an endocrinologist.

A deep rooted passion, writing for me is as much a pleasure as it is business! From remedies to politics, I love breathing in life into the most mundane of topics! When I am not writing, you will often find me either curled up with a book and a bag of fries, or playing with my son of five years and his many transformers and cars! Wanna watch a movie? Ask me for an unbiased review first! If you ask me what I love most, my answer will be quick: Travel, Food, Movies, Music, Writing, Books, and My Son!
Insulin causes lower Testosterone levels, so go easy on the carbs and eat more protein right? Well you need to be careful with protein consumption – Excess protein without fat can also cause insulin spikes. So go easy on that chicken breast with a side of egg white omelets washed down with a protein shake. From an insulin point of view you may as well drink a can of soda with some aminos acid! So what should you do? Eat more fat.
If testosterone deficiency occurs during fetal development, then male characteristics may not completely develop. If testosterone deficiency occurs during puberty, a boy’s growth may slow and no growth spurt will be seen. The child may have reduced development of pubic hair, growth of the penis and testes, and deepening of the voice. Around the time of puberty, boys with too little testosterone may also have less than normal strength and endurance, and their arms and legs may continue to grow out of proportion with the rest of their body.

Researchers at Ball State University found that “strength training can induce growth hormone and testosterone release.” (6) Another study from the University of Nebraska Medical Center researched the acute effects of weight lifting on serum testosterone levels. (7) The results concluded that even moderate weight lifting and light weightlifting increased serum testosterone levels in participants.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).

It may also become a treatment for anemia, bone density and strength problems. In a 2017 study published in the journal of the American Medical Association (JAMA), testosterone treatments corrected anemia in older men with low testosterone levels better than a placebo. Another 2017 study published in JAMA found that older men with low testosterone had increased bone strength and density after treatment when compared with a placebo. 

There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).
Nutritional developers formulated Nugenix® with Testofen®, a key natural ingredient to help boost “free” testosterone along with resistance training. This key ingredient is carefully extracted from the fenugreek plant. A Testofen® study in Irvine, California indicated positive free testosterone-related results. Nugenix also includes L-Citrulline Malate, Tribulus, Zinc, plus Vitamins B6 and B12 to help promote overall health and performance.*
It seems that adequate testosterone levels are an important influence on sexual symptoms in the aging male and also influence the response of men to PDE-5 inhibitors, the first line treatment for erectile dysfunction in men. Many would now suggest screening for testosterone deficiency in all men presenting with erectile dysfunction (Gore and Rajfer 2004; Shabsigh 2005). This would seem appropriate because, in addition to benefits on sexual function, identification and treatment of hypogonadal men with testosterone could improve other symptoms of hypogonadism and protect against other conditions such as osteoporosis.

This nutritious veggie is loaded with indole-3-carbinole, a chemical that gets rid of girly hormones from your blood. It was found that healthy men who took 500mg of this chemical daily for 1 week had their levels of estrogen reduced by half, making testosterone more effective. If you have not done so already, it is time to start making cabbage a regular part of your diet to get your T-levels boosted.
The saturated fats from the coconut oil contain Medium Chained Triglycerides (MCT). MCT leads to burn more fat. It is these MCTs that increase the rate of testosterone production. As a result, coconut oils are better than a run of the mill cooking mediums. Regular coconut oil usage has proven benefits such as higher sperm count and more sperm motility; both of which occur as a result of the extra testosterone in your body.
Low testosterone levels can cause mood disturbances, increased body fat, loss of muscle tone, inadequate erections and poor sexual performance, osteoporosis, difficulty with concentration, memory loss and sleep difficulties. Current research suggests that this effect occurs in only a minority (about 2%) of ageing men. However, there is a lot of research currently in progress to find out more about the effects of testosterone in older men and also whether the use of testosterone replacement therapy would have any benefits.
If you’re a frequent reader here in AM, you already know that increased dietary fat intake is directly correlated with increased testosterone production. And not only that, but the types of fat that increase T seem to be saturated fats (SFAs) and monounsaturated fats (MUFAs), while polyunsaturated (PUFAs) actually tend to lower testosterone (more here).
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
Only a few natural testosterone boosters are supported by scientific studies. The herb with the most research behind it is called ashwagandha. One study tested the effects of this herb on infertile men and found a 17% increase in testosterone levels and a 167% increase in sperm count. In healthy men, ashwagandha increased levels by 15%. Another study found it lowered cortisol by around 25%, which may also aid testosterone.
You should also get rid of cleaning products loaded with chemicals, artificial air fresheners, dryer sheets, fabric softeners, vinyl shower curtains, chemical-laden shampoos, and personal hygiene products. Replace them all with natural, toxin-free alternatives. Adjusting your diet can also help, since many processed foods contain gender-bending toxins. Switch to organic foods, which are cultivated without chemical interventions.

For example, the study published in Obesity Research tells that the scientists measured testosterone levels in two groups of middle-aged men with obesity. One group underwent a 16-week weight loss program, while the second group did nothing. Each participant of the first group lost 20 kg on the average. And these participants experienced a significant increase in testosterone levels. So, the fight against overweight is very important for those who want to overcome testosterone deficiency. But starvation is strictly forbidden because this is a stressful situation which leads to the sharp decline in T levels.
So if you’re intent on maximizing your testosterone levels, and/or you have applied all of the above and you’re still not satisfied with your results (which would be surprising) then you could try the below. I will point out that some of these tips may not have the scientific evidence to back them up like the previous points, but I can assure you that either I have or do use them (and have positive results), or a client has used them with pleasing results, or finally it is such a new conception that there isn’t enough evidence to prove it one way or another.
The regular intake of testosterone boosters is known for the high level of safety comparing to the hormone injections and the use of illegal steroids. But still to protect yourself against any possible adverse reactions, you should remember that the supplementation can’t be continuous. The breaks from time to time are required. Such an approach to the use of boosters is healthy and best-working if you aspire to enhance own hormone production without any harm.
Testosterone is an important enzyme that is most often associated with the process of puberty. However, both men and women have testosterone, and it is responsible for more than just transforming boys into men. Testosterone is also involved in maintaining bone density and regulating the levels of your red blood cells. Testosterone has also been shown to have a positive effect on muscle protein synthesis, essentially meaning that more testosterone can result in bigger muscles.

"The hope," explained Dr. Swerdloff in a telephone interview, "is this will provide some clarity as to whether testosterone replacement therapy will benefit men in this older age group who clearly have abnormal testosterone and have some symptoms." He added, "We don't know whether it will be beneficial at all the endpoints we are studying, or be beneficial to some and not others. We don't know if the benefits occur at different blood levels that are attained in the individuals."
He said it's also important to point out there may be different thresholds for different people. "One man might get low libido at 325 milligrams per deciliter, while another might not get low libido until 450," he said. As for doctors who say that every man of a certain age will benefit from TRT, Dr. Swerdloff said, "It should not be treatment based on age. It should be treatment based on the best available laboratory and clinical data. Those patients who don't meet the criteria for treatment should not be treated unless there is some logical reason why they are outliers from the usual type of pattern."
Consume vegetable carbohydrates and healthy fats. Your body requires the carbohydrates from fresh vegetables rather than grains and sugars. In addition to mono- or polyunsaturated fats found in avocados and raw nuts, saturated fats are also essential to building your testosterone production. According to research, there was a decrease in testosterone stores in people who consumed a diet low in animal-based fat.11 Aside from avocados and raw nuts, ideal sources of healthy fat that can boost your testosterone levels include:
Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is more pronounced, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
Attention, memory, and spatial ability are key cognitive functions affected by testosterone in humans. Preliminary evidence suggests that low testosterone levels may be a risk factor for cognitive decline and possibly for dementia of the Alzheimer's type,[100][101][102][103] a key argument in life extension medicine for the use of testosterone in anti-aging therapies. Much of the literature, however, suggests a curvilinear or even quadratic relationship between spatial performance and circulating testosterone,[104] where both hypo- and hypersecretion (deficient- and excessive-secretion) of circulating androgens have negative effects on cognition.
Osteoporosis refers to pathological loss of bone density and strength. It is an important condition due to its prevalence and association with bone fractures; most commonly of the hip, vertebra and forearm. Men are relatively protected from the development of osteoporosis by a higher peak bone mass compared with women (Campion and Maricic 2003). Furthermore, women lose bone at an accelerated rate immediately following the menopause. Nevertheless, men start to lose bone mass during early adult life and experience an increase in the rate of bone loss with age (Scopacasa et al 2002). Women of a given age have a higher prevalence of osteoporosis in comparison to men but the prevalence increases with age in both sexes. As a result, men have a lower incidence of osteoporotic fractures than women of a given age but the gap between the sexes narrows with advancing age (Chang et al 2004) and there is evidence that hip fractures in men are associated with greater mortality than in women (Campion and Maricic 2003).
That testosterone decreases with age has been clearly established by many studies over many years in several different populations of men (Harman et al 2001; Feldman et al 2002; Araujo et al 2004; Kaufman and Vermeulen 2005). Of even greater significance is the steeper fall of the most biologically active fraction of total testosterone, non-sex hormone binding globulin (SHBG)- bound testosterone, or bioavailable testosterone (bio-T). The classical, but not the only approach to measuring bio-T, is to precipitate out SHBG (and hence the testosterone which is strongly bound to it as well) and measure the remainder as total testosterone (Tremblay 2003). Vermeulen et al (1999) have devised a less tedious and less expensive method of measuring a surrogate for bio-T, namely calculated bio-T, inserting total T, albumin, SHBG and a constant into a mathematical formulation. There is a strong correlation between actual bio-T and calculated bio-T (Emadi-Konjin et al 2003).
A 2010 study published in the journal Hormones and Behavior first suggested this when researchers evaluated the “dual-hormone hypothesis” clinically. (11) They discovered that when cortisol is elevated, testosterone responds by elevating as well but soon after bottoms out at a much lower level than before cortisol kicked in! That means you want to find ways to relieve stress to keep your testosterone levels up.
There are the testosterone deficiency signs, such as loss of sexual desire, erectile dysfunction, impaired fertility, chronic fatigue, etc. But it’s not always possible to understand which medical condition caused the decrease in testosterone levels. For example, if you always feel exhausted and have no sexual desire, it may provide evidence of depression.
Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.
If you want to continue exploring the cool topic of eating foods to improve testosterone. I have some tips for you. First, you should read the post about the testosterone boosting recipes to find how you can cook the foods that you have just read about here. Finally, now that you know the best foods to increase testosterone, it is also crucial that you know which foods to avoid to protect your testosterone.

Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
Although, most studies on TT have been conducted on animals, the results appear promising. One study that looked at sexually sluggish male albino rats found that having been given extracts of TT, the rats "mount frequency, intromission frequency, and penile erection index" all increased, while "mount latency, intromission latency, and ejaculatory latency" all decreased. Who said romance was dead?

Erectile dysfunction is a common finding in the aging male. A prevalence of over 70% was found in men older than 70 in a recent cross-sectional study (Ponholzer et al 2005). Treatment with phosphodiesterase-5 (PDE-5) inhibitors is proven to be effective for the majority of men but some do not respond (Shabsigh and Anastasiadis 2003). The condition is multi-factorial, with contributions from emotional, vascular, neurological and pharmacological factors. The concept of erectile dysfunction as a vascular disease is particularly interesting in view of the evidence presented above, linking testosterone to atherosclerosis and describing its action as a vasodilator.
Everyone knows that carbohydrates are extremely important for testosterone production, but instead of reaching for grains during your next meal, stack your plate high with potatoes. Research reveals that grains have inflammatory properties, but the testosterone-friendly starches in potatoes will have the bodybuilder in your life smiling at dinnertime!
Although some men believe that taking testosterone medications may help them feel younger and more vigorous as they age, few rigorous studies have examined testosterone therapy in men who have healthy testosterone levels. And some small studies have revealed mixed results. For example, in one study healthy men who took testosterone medications increased muscle mass but didn't gain strength.
×