A blood test is the only way to diagnose a low testosterone level or a reduction in the bioavailability of testosterone. Some men have a lower than normal testosterone level without signs or symptoms. For most men, no treatment is needed. But for some others, very low testosterone levels lead to a condition in which bones become weak and brittle (osteoporosis). For others, low testosterone might cause changes in sexual function, sleep patterns, emotions and the body.

^ Jump up to: a b Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S (April 2017). "Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in the United States and Europe". The Journal of Clinical Endocrinology and Metabolism. 102 (4): 1161–1173. doi:10.1210/jc.2016-2935. PMC 5460736. PMID 28324103.


Few of the most often asked questions I get are: what do I eat to maintain high testosterone levels, and if I have a specific list of recommended foods that increase testosterone naturally. While there are many food related posts scattered around this blog, I’ve never really made an all-around post about what I would put into a high T pantry. Until now.
Although, most studies on TT have been conducted on animals, the results appear promising. One study that looked at sexually sluggish male albino rats found that having been given extracts of TT, the rats "mount frequency, intromission frequency, and penile erection index" all increased, while "mount latency, intromission latency, and ejaculatory latency" all decreased. Who said romance was dead?
In order to discuss the biochemical diagnosis of hypogonadism it is necessary to outline the usual carriage of testosterone in the blood. Total serum testosterone consists of free testosterone (2%–3%), testosterone bound to sex hormone binding globulin (SHBG) (45%) and testosterone bound to other proteins (mainly albumin −50%) (Dunn et al 1981). Testosterone binds only loosely to albumin and so this testosterone as well as free testosterone is available to tissues and is termed bioavailable testosterone. Testosterone bound to SHBG is tightly bound and is biologically inactive. Bioavailable and free testosterone are known to correlate better than total testosterone with clinical sequelae of androgenization such as bone mineral density and muscle strength (Khosla et al 1998; Roy et al 2002). There is diurnal variation in serum testosterone levels with peak levels seen in the morning following sleep, which can be maintained into the seventh decade (Diver et al 2003). Samples should always be taken in the morning before 11 am to allow for standardization.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
Once your elevate testosterone levels, you will also sharpen your focus, enhance sports performance, and enjoy enormous competitive spirit. You will also soon notice that the lack of motivation is no longer your problem. Being highly motivated and aggressive due to the action of testosterone boosters, you will experience better muscle gain. Whether you are a novice or a professional sportsman, you will quickly reach your sports goals.

That said, magnesium is one of a few ingredients demonstrated to impact testosterone levels. Researchers at Italy’s University of Palermo found that magnesium improved participants’ anabolic hormone status — including their testosterone levels. In a follow-up study, they confirm that even adjusting for age differences in their participant group, “magnesium was positively associated with total testosterone.” They propose that magnesium supplementation might help improve muscle performance in aging men — a group particularly vulnerable to declining/low testosterone levels. Outside of Italy, researchers at Turkey’s Selçuk University found that magnesium supplementation increased testosterone levels for both athletes and more sedentary men alike.
In a placebo-controlled study, 27 Division II football players received either a placebo or a ZMA supplement for a total of seven weeks during their scheduled spring practice. At the end of the seven weeks, the players taking the ZMA supplement had a 30 percent increase in testosterone, while the placebo group had a 10 percent decrease. The ZMA group also saw an 11.6 percent increase in strength, compared to only 4.6 percent in the placebo group.[7]
Not only do these veggies increase your testosterone levels. They help you get rid of the excess estrogens from your body. Excess estrogens in the body block testosterone production by your endocrine system. When chewed, cruciferous veggies release a compound called Indole-3-carbinol. This compound converts excess estrogens into safer forms and thus helps you reduce those ugly man boobs.
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
Growth of spermatogenic tissue in testicles, male fertility, penis or clitoris enlargement, increased libido and frequency of erection or clitoral engorgement occurs. Growth of jaw, brow, chin, and nose and remodeling of facial bone contours, in conjunction with human growth hormone occurs.[21] Completion of bone maturation and termination of growth. This occurs indirectly via estradiol metabolites and hence more gradually in men than women. Increased muscle strength and mass, shoulders become broader and rib cage expands, deepening of voice, growth of the Adam's apple. Enlargement of sebaceous glands. This might cause acne, subcutaneous fat in face decreases. Pubic hair extends to thighs and up toward umbilicus, development of facial hair (sideburns, beard, moustache), loss of scalp hair (androgenetic alopecia), increase in chest hair, periareolar hair, perianal hair, leg hair, armpit hair.

Barbara Mintzes, at the University of British Columbia, said in a Skype interview, "Androgel was approved for a real condition—men who have a number of clinical or acquired conditions that affect testosterone, either through the testes or pituitary gland. So testosterone replacement therapy makes sense, and producing it in a gel makes sense. Where there is an actual need for the product, there's nothing wrong with that." But, she added, "When this gets marketed for what is essentially healthy aging, the antennas go up."


The changes in average serum testosterone levels with aging mean that the proportion of men fulfilling a biochemically defined diagnosis of hypogonadism increases with aging. Twenty percent of men aged over 60 have total testosterone levels below the normal range and the figure rises to 50% in those aged over 80. The figures concerning free testosterone are even higher as would be expected in view of the concurrent decrease in SHBG levels (Harman et al 2001).
Alpha-5-Reductase Inhibition– This method for test boosting reduces the concentration of Alpha-5-Reductase, which is an enzyme throughout the body which converts active testosterone to DHT. The effect of this inhibition prevents the degradation of testosterone and by doing so, raises testosterone concentrations in the body. This type of A5R inhibition is also the primary method for treating prostate enlargement, which is caused by high levels of DHT.
Does zinc provide testosterone benefits? The answer is, yes. It is an essential mineral which is used in many processes within the body and has a similar role like vitamin D. Men who have a deficiency of zinc may suffer from low testosterone levels but taking zinc supplements can help them to improve the testosterone levels. Zinc deficiency is an essential factor in infertility because it also reduces the sperm count, but with supplements, the sperm count increases along with improvement in testosterone levels. It also helps to recover from high-intensity interval training because that also cause the decline in testosterone levels.
If you are very weak, start with resistance bands. This gentle form of strength-training allows you to use a rubber strap to train weak muscles before lifting actual weights.[5] Do this 2 to 3 times per week for the first 3 to 4 weeks. If you have a joint or back problem, you may want to graduate to stronger bands and stick to this form of strength training.
Zinc is little more of a nice-to-have ingredient than a must-have. It’s on our radar as an ingredient that possibly boosts testosterone levels, and while we couldn’t find enough supporting evidence that taking zinc would increase natural testosterone, low zinc levels have been connected to infertility. A low zinc level is also possibly a sign of hypogonadism. The closest support we found is in a study which found that people recovered from nutritional deficiency-related problems more quickly if they took a zinc supplement than those who did not. Zinc is available in many foods, such as oysters, fortified breakfast cereals, and red meat.
Another effect that can limit treatment is polycythemia, which occurs due to various stimulatory effects of testosterone on erythropoiesis (Zitzmann and Nieschlag 2004). Polycythemia is known to produce increased rates of cerebral ischemia and there have been reports of stroke during testosterone induced polycythaemia (Krauss et al 1991). It is necessary to monitor hematocrit during testosterone treatment, and hematocrit greater than 50% should prompt either a reduction of dose if testosterone levels are high or high-normal, or cessation of treatment if levels are low-normal. On the other hand, late onset hypogonadism frequently results in anemia which will then normalize during physiological testosterone replacement.

The changes in average serum testosterone levels with aging mean that the proportion of men fulfilling a biochemically defined diagnosis of hypogonadism increases with aging. Twenty percent of men aged over 60 have total testosterone levels below the normal range and the figure rises to 50% in those aged over 80. The figures concerning free testosterone are even higher as would be expected in view of the concurrent decrease in SHBG levels (Harman et al 2001).
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
Pregnant or nursing women who are exposed to EDCs can transfer these chemicals to their child. Exposure to EDCs during pregnancy affects the development of male fetuses. Fewer boys have been born in the United States and Japan in the last three decades. The more women are exposed to these hormone-disrupting substances, the greater the chance that their sons will have smaller genitals and incomplete testicular descent, leading to poor reproductive health in the long term. EDCs are also a threat to male fertility, as they contribute to testicular cancer and lower sperm count. All of these birth defects and abnormalities, collectively referred to as Testicular Dysgenesis Syndrome (TDS), are linked to the impaired production of testosterone.5
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Beast Sports Nutrition - Super Test has all four of our dream ingredients: magnesium, fenugreek, longjack, and zinc. These ingredients have all been demonstrated to help increase natural testosterone levels, with plenty of scientific research to support them (done on humans too, and not just rats). By combining all four ingredients, Super Test has the best chance of helping to increase your testosterone levels, and thereby helping you gain muscle or have a more active sex life.
Once you have surpassed your early twenties, natural testosterone levels slowly begin to decline. This is a natural occurrence which occurs in all men, however can be prevented to some extent by ensuring your diet is rich in vitamins, minerals and quality fats. You can also supplement with a Natural Testosterone Booster which will work by encouraging your body to produce more Testosterone, back up to levels you could produce in your younger years.

In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][151] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][151] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][151] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[153][154] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[152]


As blood levels of testosterone increase, this feeds back to suppress the production of gonadotrophin-releasing hormone from the hypothalamus which, in turn, suppresses production of luteinising hormone by the pituitary gland. Levels of testosterone begin to fall as a result, so negative feedback decreases and the hypothalamus resumes secretion of gonadotrophin-releasing hormone. 
×