Testosterone is a stimulant of hematopoiesis in the bone marrow and consequently, increases the hematocrit (Shahidi 1973). Men with unexplained anemia should have their testosterone measured and if reduced, these men should be treated with testosterone. Because of the erythropoietin stimulating effect of testosterone, one of the parameters to be monitored during testosterone treatment is hematocrit since a small percent of testosterone-treated men develop polycythemia.

Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).
This nutritious veggie is loaded with indole-3-carbinole, a chemical that gets rid of girly hormones from your blood. It was found that healthy men who took 500mg of this chemical daily for 1 week had their levels of estrogen reduced by half, making testosterone more effective. If you have not done so already, it is time to start making cabbage a regular part of your diet to get your T-levels boosted.
Both Beast Sports’ Super Test and iSatori’s ISA-Test contain a proprietary blend, which means they don’t disclose the amount of each and every ingredient in the mix. This is only a problem if there is an ingredient tucked into a proprietary blend for which we need to know an amount, like magnesium and zinc. While none of the ingredients in Beast Sports’s proprietary blend raised any red flags, iSatori’s blend contains melatonin, a hormone that helps regulate sleep. Melatonin is an ingredient that has a hard upper limit — Healthline suggests at most 10mg for an adult — and even lower doses can interact poorly with many medications. Since we can’t confirm whether the amount of melatonin in iSatori’s proprietary blend is under 10mg, we cut iSatori.

That testosterone decreases with age has been clearly established by many studies over many years in several different populations of men (Harman et al 2001; Feldman et al 2002; Araujo et al 2004; Kaufman and Vermeulen 2005). Of even greater significance is the steeper fall of the most biologically active fraction of total testosterone, non-sex hormone binding globulin (SHBG)- bound testosterone, or bioavailable testosterone (bio-T). The classical, but not the only approach to measuring bio-T, is to precipitate out SHBG (and hence the testosterone which is strongly bound to it as well) and measure the remainder as total testosterone (Tremblay 2003). Vermeulen et al (1999) have devised a less tedious and less expensive method of measuring a surrogate for bio-T, namely calculated bio-T, inserting total T, albumin, SHBG and a constant into a mathematical formulation. There is a strong correlation between actual bio-T and calculated bio-T (Emadi-Konjin et al 2003).


Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.

The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
Dr. Wassersug, whose background is in evolutionary biology, also noted that lower testosterone in older men may be adaptive, a positive benefit, as our bodies age and become increasingly frail. "The argument can be made," he said, "that it's not beneficial to have the mindset of a 19-year-old when you are 49-years-old, because if you are aggressive enough to get into a conflict with an actual 19-year-old, you are going to get killed."

Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
In fact, testosterone supplements might cause more problems than they solve. Studies have suggested a connection between supplements and heart problems. A 2010 study reported in The New England Journal of Medicine showed that some men over age 65 had an increase in heart problems when they used testosterone gel. A later of men younger than 65 at risk for heart problems and heart-healthy older men showed that both groups had a greater risk of heart attack when taking testosterone supplements.
Phthalates are found to cause poor testosterone synthesis by disrupting an enzyme required to create the male hormone. Women with high levels of DEHP and DBP (two types of phthalates) in their system during pregnancy were found to have sons that had feminine characteristics Phthalates are found in vinyl flooring, detergents, automotive plastics, soaps and shampoos, deodorants, perfumes, hair sprays, plastic bags and food packaging, among a long list of common products. Aside from phthalates, other chemicals that possess gender-bending traits are:
Few of the most often asked questions I get are: what do I eat to maintain high testosterone levels, and if I have a specific list of recommended foods that increase testosterone naturally. While there are many food related posts scattered around this blog, I’ve never really made an all-around post about what I would put into a high T pantry. Until now.
Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.
Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[151] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][151][157][158] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[159] skin, hair follicles, and brain[160] and aromatase is highly expressed in adipose tissue, bone, and the brain.[161][162] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[152] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[163] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[164]

Every vitamin, mineral, and ingredient that affects the human body can be taken in enough quantities that they are harmful, or toxic, even the ones that — at lower levels — are beneficial or necessary. Unfortunately, testosterone boosters contain a lot of ingredients that are not well understood. This means in addition to not being able to confirm whether certain ingredients increase testosterone, the scientific and medical communities also don’t know at what levels many ingredients become toxic. On the up side, you might need to eat several pounds of a particular leafy plant before it becomes harmful. On the down side, it could be significantly less that pushes you over your body’s limit. We simply don’t know how little or how much the human body can tolerate. We recommend keeping your doctor in the loop when you add any supplement with unproven ingredients into your diet — they’ll be able to help you find and track any undesired side-effects that these ingredients might cause.
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
Write down a list of the people you need to forgive and then do so. You can do that just yourself, between you and God, or you can do that in person — but it really is important. You can also turn to the Bible and other personal growth books, or seek out the help of a counselor or a good church. Really take care of those emotional issues, specifically resentment, unforgiveness, anger and frustration, and you’ll see that’s going to really help you cleanse you and detoxify spiritually. It’s going to also help naturally raise your testosterone levels.
Zinc is little more of a nice-to-have ingredient than a must-have. It’s on our radar as an ingredient that possibly boosts testosterone levels, and while we couldn’t find enough supporting evidence that taking zinc would increase natural testosterone, low zinc levels have been connected to infertility. A low zinc level is also possibly a sign of hypogonadism. The closest support we found is in a study which found that people recovered from nutritional deficiency-related problems more quickly if they took a zinc supplement than those who did not. Zinc is available in many foods, such as oysters, fortified breakfast cereals, and red meat.
To find the best testosterone booster, we collected every supplement available on BodyBuilding.com, and cross-checked our list against the top results on best of lists like MensFitness, BroScience, and BodyNutrition. We only looked at pills since some of the ingredients in testosterone boosters have a reputation for tasting bad, and powders just prolong the experience. There are a lot — 133 of them to be precise — and they all claim to boost testosterone levels. Testosterone (for men) is “thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm.” If a supplement can increase your natural testosterone levels, the rest should follow. As we mentioned above, it’s not that simple, and at best, you’ll experience only a short-lived boost.
The second theory is similar and is known as "evolutionary neuroandrogenic (ENA) theory of male aggression".[78][79] Testosterone and other androgens have evolved to masculinize a brain in order to be competitive even to the point of risking harm to the person and others. By doing so, individuals with masculinized brains as a result of pre-natal and adult life testosterone and androgens enhance their resource acquiring abilities in order to survive, attract and copulate with mates as much as possible.[78] The masculinization of the brain is not just mediated by testosterone levels at the adult stage, but also testosterone exposure in the womb as a fetus. Higher pre-natal testosterone indicated by a low digit ratio as well as adult testosterone levels increased risk of fouls or aggression among male players in a soccer game.[80] Studies have also found higher pre-natal testosterone or lower digit ratio to be correlated with higher aggression in males.[81][82][83][84][85]
Fenugreek, which is scientifically known as Trigonella foenum-graecum, is a popular medicinal herb used in India and areas of the Middle East. Studies on fenugreek suggest that it can increase testosterone levels by acting as an aromatase inhibitor. Aromatase is the enzyme responsible for converting testosterone into estrogen. Studies show that subjects supplementing fenugreek experienced a boost in testosterone as well as reduced fat loss and increased strength and muscle mass.
It seems that adequate testosterone levels are an important influence on sexual symptoms in the aging male and also influence the response of men to PDE-5 inhibitors, the first line treatment for erectile dysfunction in men. Many would now suggest screening for testosterone deficiency in all men presenting with erectile dysfunction (Gore and Rajfer 2004; Shabsigh 2005). This would seem appropriate because, in addition to benefits on sexual function, identification and treatment of hypogonadal men with testosterone could improve other symptoms of hypogonadism and protect against other conditions such as osteoporosis.
A 46 XY fetus is destined to become a male because the Y chromosome carries testicular determining gene which initiates transformation of the undifferentiated gonad into testes (Töhönen 2003). The testes subsequently produce both Mullerian Inhibiting Factor (to induce degeneration of the Mullerian system, the internal female ductal apparatus) and testosterone (to stimulate growth and development of the Wolffian system – epididymus, vas deferens, seminal vesicle and, after conversion to dihydrotestosterone (DHT) by the enzyme 5-α-reducase, the prostate gland). DHT is also the primary androgen to cause androgenization of the external genitalia.
Travison, T. G., Vesper, H. W., Orwoll, E, Wu, F., Kaufman, J. M., Wang, Y., …Bhasin, S. (2017, April1). Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. The Journal of Clinical Endocrinology & Metabolism, 102(4), 1161–1173. Retrieved from https://academic.oup.com/jcem/article/102/4/1161/2884621

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication or have a medical condition.
Unlike women, who experience a rapid drop in hormone levels at menopause, men experience a more gradual decrease of testosterone levels over time. The older the man, the more likely he is to experience below-normal testosterone levels. Men with testosterone levels below 300 ng/dL may experience some degree of low T symptoms. Your doctor can conduct a blood test and recommend treatment if needed. They can discuss the potential benefits and risks of testosterone medication, as well.
There are valid concerns about the safety of long-term treatment with testosterone particularly with respect to the cardiovascular system and the potential for stimulating prostate cancer development. There are no convincing hard data, however, to support these concerns. If anything, the data strongly suggest that adequate testosterone availability is cardioprotective and coronary risk factors such as diabetes, obesity and the metabolic syndrome are associated with reduced testosterone levels. It is certainly appropriate to avoid giving testosterone to men with prostate or breast cancer but it is not appropriate to accuse testosterone of inducing the development of de novo prostate cancers since evidence for this accusation is lacking (Wang et al 2004; Feneley and Carruthers 2006).
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
Testosterone is a hormone with multifaceted physiological functions and multiple associations with pathophysiological states. It is an important hormone in male reproductive and metabolic function from intrauterine life to old age. In severe or classical hypogonadal states there is little controversy about the need to administer testosterone by an intramuscular, oral or transdermal formulation. There is controversy about making the diagnosis in the less severe cases of hypogonadism associated with the aging male but the current evidence suggests that this is efficacious in appropriately selected men and that there is little if any risk in giving aging symptomatic hypogonadal men a 6 month trial of therapy to determine whether symptoms will improve.
Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is more pronounced, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
According to British Medical Journal (BMJ), the European Male Ageing Study has provided the best estimate of the prevalence of low T—defined as a combination of sexual symptoms and measured testosterone level—finding that only 0.1 percent of men in their forties, 0.6 percent in their fifties, 3.2 percent in their sixties, and 5.1 percent of men in their seventies would meet the criteria for the diagnosis.
The mineral zinc is important for testosterone production, and supplementing your diet for as little as six weeks has been shown to cause a marked improvement in testosterone among men with low levels.1 Likewise, research has shown that restricting dietary sources of zinc leads to a significant decrease in testosterone, while zinc supplementation increases it2 -- and even protects men from exercised-induced reductions in testosterone levels.3
This is natural amino acid and can boost testosterone levels. According to research, it increases the production of luteinizing hormone which triggers the production of testosterone from Leydig cells. It also helps in improving sperm quality and quantity. The men who take this have increased testosterone production which allows them to perform better in athletic activity. It helps to increase muscle mass and strength.
There are no studies showing its effects on healthy males, but it has been shown to drastically improve testosterone in infertile males (ref 77). It's also packed full of minerals, so is a great superfood nevertheless. I use the Sunfoods brand. Make sure you buy from a quality brand, as there are a lot of poor shilajit products out there, also some have been shown to be high in heavy metals. 
A testicular action was linked to circulating blood fractions – now understood to be a family of androgenic hormones – in the early work on castration and testicular transplantation in fowl by Arnold Adolph Berthold (1803–1861).[177] Research on the action of testosterone received a brief boost in 1889, when the Harvard professor Charles-Édouard Brown-Séquard (1817–1894), then in Paris, self-injected subcutaneously a "rejuvenating elixir" consisting of an extract of dog and guinea pig testicle. He reported in The Lancet that his vigor and feeling of well-being were markedly restored but the effects were transient,[178] and Brown-Séquard's hopes for the compound were dashed. Suffering the ridicule of his colleagues, he abandoned his work on the mechanisms and effects of androgens in human beings.
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Male sex characteristics greatly depend on testosterone synthesis in your body. If you keep the levels of this hormone normal, you will prevent sexual potency issues. Accordingly, the elevation of testosterone levels helps combat the impairment of erectile function. The levels of this hormone also affect male fertility. If these levels grow, fertility improves. Aging has a negative impact on testosterone secretion. Such hormonal imbalance is inevitable and permanent. But it’s still possible to positively change the situation and stimulate hormone production by using the high-quality testosterone boosters.
If your levels are indeed low, there are a number of synthetic and bioidentical testosterone products on the market, as well as DHEA, which is the most abundant androgen precursor prohormone in the human body, meaning that it is the largest raw material your body uses to produce other vital hormones, including testosterone in men and estrogen in women.
Topical testosterone, specifically gels, creams and liquids, may transfer to others. Women and children are most at risk of harmful effects from contact with them. You should take care to cover the area and wash your hands well after putting on the medication. Be careful not to let the site with the topical TT touch others because that could transfer the drug.

Free shipping available with any purchase over $49. No cash value. Void where prohibited, taxed or restricted by law. Valid at GNC.com or when calling 1-877-GNC-4700. Free shipping offer applies to ground shipping on orders shipped within the continental United States only. Free shipping offer does not include P.O. Boxes and APO/FPO addresses. Free shipping offer does not apply when shipping to Alaska, Hawaii or Puerto Rico. Not valid on previous purchases, exchanges or special orders. No substitutions or backorders. GNC may offer other free shipping offers periodically. Details of these offers will be set forth within the specific promotions. Free shipping offer excludes ready-to-drink products.
Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.
So what is this Big T, anyway? Derived from cholesterol, testosterone is a steroid hormone—called an androgen—that causes the development and maintenance of masculine characteristics. It's mainly secreted by the testicles in males, although the adrenal cortex and ovaries in females also secrete testosterone—though only about one-tenth the amount as in healthy males.
Testosterone has two major effects on bones: (a) through conversion to estradiol by way of the enzyme, aromatase, testosterone inhibits osteoclastic activity and hence bone resorption; and (b) through conversion to DHT via 5-α-reductase, it stimulates osteoblastic activity and so enhances the laying down of bone (Tivesten et al 2004; Davey and Morris 2005). Hypogonadal men are at risk for the development of osteopenia or osteoporosis and hence for subsequent fracture (Fink et al 2006). About one-third of all osteoporotic hip fractures occur in men and the risk of any osteoporotic fracture in men over 50 is as high as 25 percent (Seeman 1997; Adler 2006). Although treatment with testosterone in hypogonadal men increases bone mineral density (Katznelson et al 1996), it has not yet been established that this results in a reduction in fracture rate.
A recent study conducted on trained subjects showed that squats stimulated a greater testosterone response than leg presses.10 Stick with multijoint exercises like squats, bench presses, and deadlifts—the kinds of compound lifts that'll help jack up your testosterone levels. Since machines isolate a muscle you're working (less stabilizer activity), they're not as good a choice compared to free weights.

We all remember the time during our teens where our body underwent majority of its changes that led us into adulthood. As far as testosterone levels go, this period of time is where the production of this hormone peaked. Testosterone levels during these teenage years remain high and consistent, and therefore it is not advisable to use a testosterone boosting supplement during this time. This is because, Natural Testosterone Boosters work by encouraging your body to increase it;s natural levels back to their maximum capacity. If your body is already producing it’s maximum amount of Testosterone, these products will be ineffective for you. You should be prioritising quality, intense training sessions with adequate nutrition, rich in protein and carbohydrates to elicit growth and repair.


Testosterone has several positive effects on sexual function, but its most significant effect is on libido, sexual interest and arousal. Boys going through puberty develop an enhanced interest in sex (thoughts, fantasies, masturbation, intercourse) as a consequence of rising levels of testosterone. Hypogonadal men usually have a significant improvement in libido when TRT is initiated (Wang et al 2000; Morley and Perry 2003).
If you still feel the need to supplement, keep in mind that supplemental magnesium is more likely than dietary magnesium to cause adverse effects, which is why the FDA fixed at 350 mg the Tolerable Upper Intake Level for magnesium supplementation in adults. Also, you may want to avoid magnesium oxide: it has poor bioavailability (rats absorbed only 15% in one study,[43] and humans only 4% in another[44]) and can cause intestinal discomfort and diarrhea.
Common side effects from testosterone medication include acne, swelling, and breast enlargement in males.[10] Serious side effects may include liver toxicity, heart disease, and behavioral changes.[10] Women and children who are exposed may develop virilization.[10] It is recommended that individuals with prostate cancer not use the medication.[10] It can cause harm if used during pregnancy or breastfeeding.[10]
Grape seed extract is another ingredient with not enough research to suggest a dosage. Grape seed extract can interact with drugs like “blood thinners, NSAID painkillers (like aspirin, Advil, and Aleve), certain heart medicines, cancer treatments, and others.” If this sounds like you (or if you ever pop an Advil to clear off a headache), you’ll need to speak with a doctor to make sure this supplement is safe to take.

Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
A study out of the University of Mary Hardin-Baylor in Belton, Texas, examined the effects of fenugreek supplementation on strength and body composition in resistance-trained men. Researchers found that while both the placebo and fenugreek groups significantly increased their strength during the first four weeks, only the fenugreek group saw significant increases in strength after eight weeks of training and supplementation.[5]
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
Testosterone is a steroid from the androstane class containing a keto and hydroxyl groups at the three and seventeen positions respectively. It is biosynthesized in several steps from cholesterol and is converted in the liver to inactive metabolites.[5] It exerts its action through binding to and activation of the androgen receptor.[5] In humans and most other vertebrates, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. On average, in adult males, levels of testosterone are about 7 to 8 times as great as in adult females.[6] As the metabolism of testosterone in males is more pronounced, the daily production is about 20 times greater in men.[7][8] Females are also more sensitive to the hormone.[9]
Both Beast Sports’ Super Test and iSatori’s ISA-Test contain a proprietary blend, which means they don’t disclose the amount of each and every ingredient in the mix. This is only a problem if there is an ingredient tucked into a proprietary blend for which we need to know an amount, like magnesium and zinc. While none of the ingredients in Beast Sports’s proprietary blend raised any red flags, iSatori’s blend contains melatonin, a hormone that helps regulate sleep. Melatonin is an ingredient that has a hard upper limit — Healthline suggests at most 10mg for an adult — and even lower doses can interact poorly with many medications. Since we can’t confirm whether the amount of melatonin in iSatori’s proprietary blend is under 10mg, we cut iSatori.
That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.

There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
According to the Mayo Clinic, testosterone therapy can help treat hypogonadism. This condition occurs when the body can’t produce enough testosterone on its own. However, it’s unclear whether supplements can help. A study published in found no scientific reason to prescribe testosterone to men over 65 years of age with normal or low to normal testosterone levels.
Unlike aerobics or prolonged moderate exercise, short, intense exercise was found to be beneficial in increasing testosterone levels. The results are enhanced with the help of intermittent fasting. Intermittent fasting helps boost testosterone by improving the expression of satiety hormones, like insulin, leptin, adiponectin, glucacgon-like peptide-1 (GLP-1), cholecystokinin (CKK), and melanocortins, which are linked to healthy testosterone function, increased libido, and the prevention of age-induced testosterone decline. When it comes to an exercise plan that will complement testosterone function and production (along with overall health), I recommend including not just aerobics in your routine, but also:
×