This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
Testosterone fluctuates according to age and life circumstance, often plummeting at the onset of parenthood, and spiking (for some) during moments of triumph. Romantic relationships, too, can impact a person’s testosterone production; though the reasons are still not fully understood, entering a relationship tends to increase women’s testosterone levels, while decreasing men’s. Since males produce significantly more testosterone than females—about 20 times more each day—females can be more sensitive to these fluctuations. High levels of testosterone, particularly in men, have been correlated with a greater likelihood of getting divorced or engaging in extramarital affairs, though a causal link has not been established.

If in a 46 XY individual testosterone is either not produced in adequate concentrations as in gonadal dysgenesis (MacLaughlin and Donahue 2004), or in the absence of the enzyme 17 alpha-hydroxylase so that testosterone is not produced (Ergun-Longmire et al 2006), or testosterone androgen receptors are absent as in the androgen insensitivity syndrome (Hughes and Deeb 2006), phenotypic females will result.
We do note that Beast Sports’ supplemental magnesium level is fairly low — 26 mg per serving, up to 52 mg per day. If your diet is not particularly rich in magnesium (found in leafy greens, nuts, and whole grains), Beast Sports may not give you enough to meet the daily recommended dose. However, if you’re taking other multi-vitamins or supplements with magnesium, you’re less likely to cross that 350mg daily upper limit.
Michael T. Murray, ND, is widely regarded as one of the leading authorities on natural medicine. He is the author of many books, including the classic Encyclopedia of Nutritional Supplements. His latest book is What the Drug Companies Won’t Tell You and Your Doctor Doesn’t Know. Visit him online at doctormurray.com.   Article Courtesy of Better Nutrition  

Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.

Why bother with such common micronutrients? Because it's not uncommon for athletes to suffer from zinc and magnesium deficiencies, partly due to inadequate replenishing of levels after intense bouts of exercise. Deficiencies in these key minerals can lead to a poor anabolic hormone profile, impaired immune function, and increased cortisol, ultimately leading to decreases in strength and performance.[6]


Overall there is evidence that testosterone treatment increases lean body mass and reduces obesity, particularly visceral obesity, in a variety of populations including aging men. With regard to muscle changes, some studies demonstrate improvements in maximal strength but the results are inconsistent and it has not been demonstrated that these changes lead to clinically important improvements in mobility, endurance or quality of life. Studies are needed to clarify this. Changes in abdominal obesity are particularly important as visceral fat is now recognised as predisposing the metabolic syndrome, diabetes and cardiovascular disease.
DHEA (dehydroepiandrosterone) extract - this is a chemical that used in your body which a ‘hormone precursor’. This means it’s the chemical used by the body to create hormones like oestrogen or testosterone. When taken as supplement it is believed to boost testosterone levels, but DHEA has not been shown to increase testosterone in men. DHEA comes in two form:
A 2010 study published in the journal Hormones and Behavior first suggested this when researchers evaluated the “dual-hormone hypothesis” clinically. (11) They discovered that when cortisol is elevated, testosterone responds by elevating as well but soon after bottoms out at a much lower level than before cortisol kicked in! That means you want to find ways to relieve stress to keep your testosterone levels up.
Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).
×