Like other steroid hormones, testosterone is derived from cholesterol (see figure).[124] The first step in the biosynthesis involves the oxidative cleavage of the side-chain of cholesterol by cholesterol side-chain cleavage enzyme (P450scc, CYP11A1), a mitochondrial cytochrome P450 oxidase with the loss of six carbon atoms to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17α-hydroxylase/17,20-lyase) enzyme in the endoplasmic reticulum to yield a variety of C19 steroids.[125] In addition, the 3β-hydroxyl group is oxidized by 3β-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17β-hydroxysteroid dehydrogenase to yield testosterone.
What you eat has a major impact on testosterone as well as other hormone levels. Therefore, you must pay attention to your long-term calorie intake and diet strategy. Constant dieting or overeating may disrupt your testosterone levels. Eating enough protein can help maintain healthy levels and aid in fat loss, which is also associated with your testosterone. Carb intake also plays a role, with research showing carbs can help optimize testosterone levels during resistance training.
Individuals with metabolic syndrome are at increased risk for developing coronary artery disease and diabetes mellitus. Predicting who might develop the metabolic syndrome would allow preventive measures to be taken in addition to weight control and other lifestyle modifications such as cessation of smoking and increased exercise. It is known that with decreasing testosterone availability in aging males there is an increase in fat mass and decrease in lean body mass (van den Beld et al 2000), there are disorders of insulin and glucose metabolism (Haffner et al 1996) and dyslipidemia (Tsai et al 2004). Kupelian and colleagues (2006) in analyzing data from the Massachusetts Male Aging Study demonstrated that men with low levels of testosterone, sex hormone-binding globulin, or clinical androgen deficiency, especially men with a BMI of greater than 25, were at increased risk of developing the metabolic syndrome and hence, diabetes mellitus and/or coronary artery disease.
That there is an association between depression and testosterone concentration seems possible because of the observation that depression may be associated with reduced testosterone concentrations, hypogonadal men may have their symptoms of depression relieved by TRT and that testosterone itself may have anti-depressant properties (Pope et al 2003). The evidence, however, is inconsistent. Seidman and colleagues (2002), for example, found that there was no relationship between testosterone and depression but there was an association of testosterone with dysthymia. McIntyre and colleagues (2006), on the other hand, found that middle-aged men with depression did have a reduction in bio-available testosterone.
The University of Connecticut recently published findings stating that those who supplemented with whey protein produced less cortisol, a stress hormone, than those who did not supplement. Cortisol lowers production of sex hormones and is also responsible for belly fat formation. Ricotta is an excellent source of natural whey protein and amino acids, both of which are essential to muscle growth and avoiding the spare tire.

Alpha-5-Reductase Inhibition– This method for test boosting reduces the concentration of Alpha-5-Reductase, which is an enzyme throughout the body which converts active testosterone to DHT. The effect of this inhibition prevents the degradation of testosterone and by doing so, raises testosterone concentrations in the body. This type of A5R inhibition is also the primary method for treating prostate enlargement, which is caused by high levels of DHT.
Testosterone boosters are supplementary substances that can be used for the purpose of increasing testosterone levels in the blood. This study aimed to evaluate the side effects and health risks of testosterone boosters among athletes. A sportsman came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, suffering from abdominal pain. The attending doctor requested general laboratory tests. He admitted to having consumed two courses of a testosterone booster over a period of 42 days following the instructions of the manufacturer. In total, the athlete in question consumed several courses, twice before the abdominal pain started and twice after it subsided. The blood tests and reports suggested that the commercial product consumed might negatively affect several hepatic functions and resulted in slightly increased testosterone concentrations after the fourth course. In conclusion, administration of testosterone booster products, although obtained from trusted sources, may still present some health risks. Further studies with large sample size and for a long period need to be done to confirm the current findings.
To find the best testosterone booster, we collected every supplement available on, and cross-checked our list against the top results on best of lists like MensFitness, BroScience, and BodyNutrition. We only looked at pills since some of the ingredients in testosterone boosters have a reputation for tasting bad, and powders just prolong the experience. There are a lot — 133 of them to be precise — and they all claim to boost testosterone levels. Testosterone (for men) is “thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm.” If a supplement can increase your natural testosterone levels, the rest should follow. As we mentioned above, it’s not that simple, and at best, you’ll experience only a short-lived boost.
These are the 4 primary methods in which the best test boosters increase testosterone production. It is important to realize, that many of these pathways can be incorporated at the same time. For example, Nutrient Optimization should always be a consideration when promoting testosterone production. As well, most men prefer sticking to an Alpha-5-Reductase regimen year-round to promote better prostate health as well as preventing hair loss.
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
Hoffman, J., Ratamess, N., Kang, J., Magine, G., Faigenbaum, A. & Stout, J. (2006, August). Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes [Abstract]. International Journal of Sport Nutrition and Exercise Metabolism, 16(4), 430–46. Retrieved from
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
Overall there is evidence that testosterone treatment increases lean body mass and reduces obesity, particularly visceral obesity, in a variety of populations including aging men. With regard to muscle changes, some studies demonstrate improvements in maximal strength but the results are inconsistent and it has not been demonstrated that these changes lead to clinically important improvements in mobility, endurance or quality of life. Studies are needed to clarify this. Changes in abdominal obesity are particularly important as visceral fat is now recognised as predisposing the metabolic syndrome, diabetes and cardiovascular disease.
Carbs play a big part in determining your Testosterone levels. Let's start with what to avoid. First, research shows that a large serving of sugar (75g of glucose), decreased Testosterone levels by as much as 25%! (25 & 26). I know this is a pretty extreme dosage, but you may want to avoid massive servings of sugar! Also, men who have Metabolic syndrome have lower Testosterone levels (27). Metabolic syndrome is often brought about by chronic high blood sugar which leads to insulin resistance.
A 46 XY fetus is destined to become a male because the Y chromosome carries testicular determining gene which initiates transformation of the undifferentiated gonad into testes (Töhönen 2003). The testes subsequently produce both Mullerian Inhibiting Factor (to induce degeneration of the Mullerian system, the internal female ductal apparatus) and testosterone (to stimulate growth and development of the Wolffian system – epididymus, vas deferens, seminal vesicle and, after conversion to dihydrotestosterone (DHT) by the enzyme 5-α-reducase, the prostate gland). DHT is also the primary androgen to cause androgenization of the external genitalia.
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).

We use cookies to ensure that we give you the best experience on our website. This includes cookies from third party social media websites and ad networks. Such third party cookies may track your use on Boldsky sites for better rendering. Our partners use cookies to ensure we show you advertising that is relevant to you. If you continue without changing your settings, we'll assume that you are happy to receive all cookies on Boldsky website. However, you can change your cookie settings at any time. Learn moreChange Settings Continue
Withania Somnifera is another name for Ashwagandha which is an ancient herb used as a medicine. It is an adaptogen because it helps the body to handle anxiety and stress. It improves T levels along with increasing sperm production. Other than improvement in sexual performance it also helps in fat loss, strength, and stamina. It reduces the stress by reducing the output of the cortisol hormone, which acts antagonist to testosterone. This reduction helps to body to trigger the testosterone production.
FITNESS DISCLAIMER: The information contained in this site is for educational purposes only. Vigorous high-intensity exercise is not safe or suitable for everyone. You should consult a physician before beginning a new diet or exercise program and discontinue exercise immediately and consult your physician if you experience pain, dizziness, or discomfort. The results, if any, from the exercises may vary from person-to-person. Engaging in any exercise or fitness program involves the risk of injury. or our panel of fitness experts shall not be liable for any claims for injuries or damages resulting from or connected with the use of this site. Specific questions about your fitness condition cannot be answered without first establishing a trainer-client relationship.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
Some of these signs and symptoms can be caused by various underlying factors, including medication side effects, obstructive sleep apnea, thyroid problems, diabetes and depression. It's also possible that these conditions may be the cause of low testosterone levels, and treatment of these problems may cause testosterone levels to rise. A blood test is the only way to diagnose a low testosterone level.