You should also get rid of cleaning products loaded with chemicals, artificial air fresheners, dryer sheets, fabric softeners, vinyl shower curtains, chemical-laden shampoos, and personal hygiene products. Replace them all with natural, toxin-free alternatives. Adjusting your diet can also help, since many processed foods contain gender-bending toxins. Switch to organic foods, which are cultivated without chemical interventions.
There are positive correlations between positive orgasm experience in women and testosterone levels where relaxation was a key perception of the experience. There is no correlation between testosterone and men's perceptions of their orgasm experience, and also no correlation between higher testosterone levels and greater sexual assertiveness in either sex.[34]
Vitamn D is a fat-soluble vitamin naturally found in a variety of foods, but it is also produced in your skin. Exposure to the sun’s ultraviolet rays causes your skin to synthesize vitamin D. This vitamin is best known for its interactions with calcium. Vitamin D promotes proper absorption of calcium in your stomach and intestines and regulates calcium and phosphate levels to ensure that your bones undergo normal mineralization. Vitamin D deficiencies have been linked to thin, brittle or misshapen bones as well as rickets in children. Having enough vitamin D and calcium protects adults from osteoporosis.
About a year ago I had trouble falling asleep and staying asleep. I'd toss in bed for close to an hour before I'd fall asleep and wake up only a few hours later to go to the bathroom. So I then started looking for a supplement to help me sleep. I didn't want to take any type of chemical based supplement; I wanted something natural that wouldn't have any side effects.
Testosterone [Figure 1] is the main male sex hormone. It is responsible for male sexuality and is the main hormone-producing the features associated with masculinity such as substantial muscle mass, facial hair, libido, and sperm production.[1] Besides, the hormone has other vital functions as the basic chemical composition of testosterone is steroidal; and steroids are known to have significant physiological, as well as psychological, effects in male individuals, especially adults.[1] Testosterone production is reduced gradually in men starting from the age of 30.[2] Hence, testosterone blood concentrations slowly diminish as age progresses. As a result, men may experience a number of physiological and psychological events, such as a lack of sex-drive, erectile dysfunction, acute depression, fatigue, low energy levels, and insomnia.[3]

So what is this Big T, anyway? Derived from cholesterol, testosterone is a steroid hormone—called an androgen—that causes the development and maintenance of masculine characteristics. It's mainly secreted by the testicles in males, although the adrenal cortex and ovaries in females also secrete testosterone—though only about one-tenth the amount as in healthy males.

Japanese Knotweed (a.k.a Hu Zhang or Polygonum cuspidatum) is highlighted by WebMD as needing more evidence to rate its effectiveness in a number of different areas: like treating constipation and liver or heart disease. They also warn that it can interact poorly with medications that are changed and broken down by the liver, and those that slow blood clotting (anticoagulants and antiplatelets).
Testosterone is a stimulant of hematopoiesis in the bone marrow and consequently, increases the hematocrit (Shahidi 1973). Men with unexplained anemia should have their testosterone measured and if reduced, these men should be treated with testosterone. Because of the erythropoietin stimulating effect of testosterone, one of the parameters to be monitored during testosterone treatment is hematocrit since a small percent of testosterone-treated men develop polycythemia.

Best of all? It's easy. "Low T Center is set up so men can walk in, take a simple blood test, and know within 30 minutes whether or not they are a candidate for testosterone replacement therapy, or TRT. Men who qualify get their first injection on the spot, and will continue to come in three times per month to receive a quick testosterone injection."


Zinc is involved in virtually every aspect of male reproduction, including testosterone metabolism. Several studies support the use of zinc for treating low sperm counts, especially when accompanied by low testosterone levels. In these studies, zinc has shown an ability to raise both sperm counts and testosterone levels. Many men may be suffering from low testosterone simply because of a zinc deficiency. Taking 30–45 mg of zinc per day is recommended; balance with 2–3 mg of copper for best results.
The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. Copyright 1997-2019, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM Health Solutions.

Jason, if you look closer you will see that Test Freak did not make it onto our list. Both Test Freak and Zeus were only used in our introductory image to show diversity among test boosters. Despite this, I still would favor Test Freak over Anabolic Freak on the basis that Anabolic Freak’s primary active ingredient is D-Aspartic Acid, while Test Freak contains a wider spectrum of active ingredients including proprietary Testofen and Trigotest along with a good dose of Zinc.

Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).
Testosterone makes a contribution to nitric oxide formation. Nitric oxide, released from penile nerves stimulates guanylate cyclase which catalyzes the transformation of guanosine-5-triphosphate into 3′,5′-cyclic, guanosine monophosphate (cyclic GMP). Gyclic GMP causes vasodilatation and hence erection formation (Morelli et al 2005). The breakdown of cyclic GMP to GMP is mediated by the enzyme, phosphodiesterase type-5, the inhibitors of which (eg, sildenafil citrate) enhance erection formation and maintanence (Carson and Lue 2005).
There have been case reports of development of prostate cancer in patients during treatment with testosterone, including one case series of twenty patients (Gaylis et al 2005). It is not known whether this reflects an increase in incidence, as prostate cancer is very common and because the monitoring for cancer in patients treated with testosterone is greater. Randomized controlled trials of testosterone treatment have found a low incidence of prostate cancer and they do not provide evidence of a link between testosterone treatment and the development of prostate cancer (Rhoden and Morgentaler 2004). More large scale clinical trials of longer durations of testosterone replacement are required to confirm that testosterone treatment does not cause prostate cancer. Overall, it is not known whether testosterone treatment of aging males with hypogonadism increases the risk of prostate cancer, but monitoring for the condition is clearly vital. This should take the form of PSA blood test and rectal examination every three months for the first year of treatment and yearly thereafter (Nieschlag et al 2005). Age adjusted PSA reference ranges should be used to identify men who require further assessment. The concept of PSA velocity is also important and refers to the rate of increase in PSA per year. Patients with abnormal rectal examination suggestive of prostate cancer, PSA above the age specific reference range or a PSA velocity greater than 0.75 ng/ml/yr should be referred to a urologist for consideration of prostate biopsy.
If your need is greater though, there are other legal options to consider. DHEA is a precursor steroid hormone that is only available on prescription in the UK, but if taken under close supervision it can have dramatic effects. It must be taken under supervision though because too high a dose can cause mood changes and aggression — roid rage, in other words — as well as all the other unwanted by-products of too much testosterone.
b) You can also use supplements to increase testosterone levels in your body. Zinc supplements are important to boost T-levels. Generally, the best source of this nutrient is from foods such as fish, meats, beans, raw milk, yogurt, raw cheese, etc. However, if you are a vegetarian, obtaining sufficient dietary zinc from natural foods alone can be difficult. This is where supplements come in, ensuring that you get the right amount of zinc required to give your testosterone levels a good boost.
Consume organic dairy products, like high-quality cheeses and whey protein, to boost your branch chain amino acids (BCAA). According to research, BCAAs were found to raise testosterone levels, particularly when taken with strength training.12 While there are supplements that provide BCAAs, I believe that leucine, found in dairy products, carries the highest concentrations of this beneficial amino acid.
^ Jump up to: a b Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S (April 2017). "Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in the United States and Europe". The Journal of Clinical Endocrinology and Metabolism. 102 (4): 1161–1173. doi:10.1210/jc.2016-2935. PMC 5460736. PMID 28324103.
Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
If your need is greater though, there are other legal options to consider. DHEA is a precursor steroid hormone that is only available on prescription in the UK, but if taken under close supervision it can have dramatic effects. It must be taken under supervision though because too high a dose can cause mood changes and aggression — roid rage, in other words — as well as all the other unwanted by-products of too much testosterone.

The final two studies looked directly at soy vs testosterone levels. The first looked at introducing consumption of soya flour on testosterone levels. They found that those who ate the Soy flour lowered their T levels during the study (43). And the second study looked at the consumption of soy protein isolates (powder) in healthy men. They found that testosterone levels decreased upon consumption of soy powder (45).
When many people think of someone with a high level of testosterone, they may picture a man loaded with strength, sexual prowess, and machismo. But while high-T has been correlated with all those things, it’s also been correlated with aggression, sexual misconduct, and violence. One of testosterone’s most common uses—as a performance-enhancing steroid—illustrates both sides of the hormone. Injecting steroids can be a quick way for athletes to dramatically improve performance, but the side effects can also be extreme, and can include excessive body hair growth, sexual dysfunction, and the hard-to-corral anger known as “roid rage.”
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.
The rise in testosterone levels during competition predicted aggression in males but not in females.[86] Subjects who interacted with hand guns and an experimental game showed rise in testosterone and aggression.[87] Natural selection might have evolved males to be more sensitive to competitive and status challenge situations and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.[88] Testosterone produces aggression by activating subcortical areas in the brain, which may also be inhibited or suppressed by social norms or familial situations while still manifesting in diverse intensities and ways through thoughts, anger, verbal aggression, competition, dominance and physical violence.[89] Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.[90] Testosterone specific structural brain characteristic can predict aggressive behaviour in individuals.[91]

Nutrient Optimization– Testosterone production can often be increased by nutrient optimization. This is the supplementation of excess key vitamins and minerals which are required to produce testosterone. This allows your test pathway to keep producing away, as opposed to someone with a key vitamin or mineral deficiency- which slows down or stops testosterone production.

Nearly 1 out of every 4 men over age 50 experience the pain of losing the ability to perform sexually as a result of erectile dysfunction (ED). Common causes of ED are atherosclerosis, diabetes, prescription drug use (namely high blood pressure, depression, and allergy drugs), and—you guessed it—low testosterone. Supplements that may help include the following:

Oral/buccal (by mouth). The buccal dose comes in a patch that you place above your incisor (canine or "eyetooth"). The medication looks like a tablet but you should not chew or swallow it. The drug is released over 12 hours. This method has fewer harmful side effects on the liver than if the drug is swallowed, but it may cause headaches or cause irritation where you place it.
“Poor lifestyle can mimic the symptoms of low testosterone and can actually cause low testosterone as well,” says Hodzovic. “The main culprits include lack of sleep, excessive stress, too little or too much exercise and too little or too much body fat. Getting healthy and active and eating a balanced nutritious diet along with enough sleep are the most important things to do.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
×