$(function(){ SocialButtonRound_OnLoad(); }); function OpenPopup(a, b, c, d, e, f) { var g, h, i, j, k, l = ""; if (1 == e) if ("REST" == f.toUpperCase() ? (j = rest_width, k = rest_height) : (j = onet_width, k = onet_height), navigator.userAgent.toUpperCase().indexOf("OPERA") == -1 && navigator.userAgent.toUpperCase().indexOf("MAC") == -1 || (k += 15), document.all) { var m = "no"; d && (m = "yes"), h = 0, i = 0, j = screen.width, k = screen.height; var n = "fullscreen=yes"; g = window.open(a, l, n) } else { j += 20, h = 0, i = 0, j = screen.width, k = screen.height; var n = "fullscreen=yes"; g = window.open(a, l, n) } else if (document.all) { var m = "no"; d && (m = "yes"), h = (screen.width - b) / 2, i = (screen.height - c) / 2; var n = "left=" + h + ",top=" + i + ",width=" + b + ",height=" + c + ",menu=no,address=no,resize=no,scrollbars=" + m + ",titlebar=no,status=no"; g = window.open(a, l, n) } else { b += 20, h = (screen.width - b) / 2, i = (screen.height - c) / 2; var n = "left=" + h + ",top=" + i + ",width=" + b + ",height=" + c + ",menu=no,address=no,resize=no,status=no"; g = window.open(a, l, n) } return g } function SocialButtonRound_OnLoad() { try { addLinksToShareIcon(), generateShareCount(document.location.href), $("ul.social-icons > li > a").not("a.mailtolink").click(function (a) { a.preventDefault(), etafScrollPos = $(document).scrollTop(), window._vis_opt_queue = window._vis_opt_queue || [], window._vis_opt_queue.push(function () { _vis_opt_goal_conversion(243) }); var b = $(this).parent("li").attr("data-social-btn"), c = $(this).attr("href"); switch (b) { case "facebook": OpenPopup(c, 670, 340, !1, 0, ""); break; case "print": window.print(); break; case "chat": break; default: console.log("Unsupported data-social-btn type: " + b) } return !1 }) } catch (a) { } } function addLinksToShareIcon() { var a = window.location, a.indexOf("?") >= 0 && (a = a.substring(0, a.indexOf("?"))); a.indexOf("#") >= 0 && (a = a.substring(0, a.indexOf("#"))); $('ul.social-icons > li[data-social-btn="facebook"] > a').attr("href", "https://www.facebook.com/sharer/sharer.php?u=" + encodeURIComponent(a)); } function generateShareCount(a) { a.indexOf("?") >= 0 && (a = a.substring(0, a.indexOf("?"))); a.indexOf("#") >= 0 && (a = a.substring(0, a.indexOf("#"))); if (a.indexOf("https://") > -1) { var b = encodeURIComponent(a); getFBCount(b) }; } function getFBCount(a) { $.ajax({ url: "https://graph.facebook.com/?fields=share&id=" + a, dataType: "jsonp", success: function (a) { a.share && ($("#shareCountContainer").val(Number($("#shareCountContainer").val()) + Number(a.share.share_count)), addToShareCountAndUpdate()) } }) } function addToShareCountAndUpdate() { if (!isNaN($("#shareCountContainer").val())) { var a = Number($("#shareCountContainer").val()); a >= 1e3 && (a = parseFloat((a / 1e3).toFixed(1)) + "K"), $("span[data-share-counter]").html(a) } }

Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][151] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][151][152] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][151] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][151][152] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[151]


The testosterone booster named Testojack makes this list simply because of what you get for the price. Testojack isn’t a powerful or mega-results driven test booster. However, for simple testosterone maintenance alongside a good diet, it can be very beneficial. Pair that up with the fact that you can often get testojack for under twenty bucks and it makes sense.

But when a premenopausal woman’s testosterone levels are too high, it can lead to polycystic ovary syndrome (PCOS), a condition that increases the risk of irregular or absent menstrual cycles, infertility, excess hair growth, skin problems, and miscarriage. High levels of testosterone in women, whether caused by PCOS or by another condition, can cause serious health conditions such as insulin resistance, diabetes, high cholesterol, high blood pressure, and heart disease. (12)
Testosterone boosters are used by many athletes worldwide to achieve a significant muscle mass increase within a short period of time.[1] However; one cannot be completely confident in terms of the quality and efficacy of such products because of several reasons, such as the possibility of bad storage conditions and originating from an unreliable source. Over the years, some consumers of testosterone boosters have complained of kidney and liver abnormalities that could be linked to their use of boosters.[10] Cases of erroneous product administration have occurred in the past as athletes may not follow the instructions on the label fully, which can lead to many side effects.[11] In the present case, a man was admitted to a hospital because of a severe abdominal pain. The pain was later found to be caused by liver injury. The diagnosis confirmed that the levels of the key hepatic enzymes were markedly elevated. The medical complications observed were found to have occurred following the consumption of two courses of a commercial testosterone booster. According to researchers based in the US, about 13% of the annual cases of acute liver failure are attributable to idiosyncratic drug- and/or supplement-induced liver injury.[12] Marked increase in the levels of ALT, AST, and gamma-glutamyl transferase was observed after consuming the first course of the commercial testosterone booster, and they started to decline after the 2nd and 3rd course. This abruptly increases the levels of liver enzymes after the first course may be attributed to the interruption effect of commercial testosterone booster on liver function as a result of the effects of its ingredients.
A recent study conducted on trained subjects showed that squats stimulated a greater testosterone response than leg presses.10 Stick with multijoint exercises like squats, bench presses, and deadlifts—the kinds of compound lifts that'll help jack up your testosterone levels. Since machines isolate a muscle you're working (less stabilizer activity), they're not as good a choice compared to free weights.
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
A related issue is the potential use of testosterone as a coronary vasodilator and anti-anginal agent. Testosterone has been shown to act as a vasodilator of coronary arteries at physiological concentrations during angiography (Webb, McNeill et al 1999). Furthermore men given a testosterone injection prior to exercise testing showed improved performance, as assessed by ST changes compared to placebo (Rosano et al 1999; Webb, Adamson et al 1999). Administration of one to three months of testosterone treatment has also been shown to improve symptoms of angina and exercise test performance (Wu and Weng 1993; English et al 2000; Malkin, Pugh, Morris et al 2004). Longer term studies are underway. It is thought that testosterone improves angina due its vasodilatory action, which occurs independently of the androgen receptor, via blockade of L-type calcium channels at the cell membrane of the vascular smooth muscle in an action similar to the dihydropyridine calcium-channel blockers such as nifedipine (Hall et al 2006).
Fitness Disclaimer: The information contained in this site is for educational purposes only. Vigorous high-intensity exercise is not safe or suitable for everyone. You should consult a physician before beginning a new diet or exercise program and discontinue exercise immediately and consult your physician if you experience pain, dizziness, or discomfort. The results, if any, from the exercises may vary from person-to-person. Engaging in any exercise or fitness program involves the risk of injury. Mercola.com or our panel of fitness experts shall not be liable for any claims for injuries or damages resulting from or connected with the use of this site. Specific questions about your fitness condition cannot be answered without first establishing a trainer-client relationship.

Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
One long-term study observed that those who slept only four hours per night had borderline deficient levels. Other long-term studies support this. One study calculated that for every additional hour of sleep you get, testosterone levels rise 15% higher, on average. Although some people seem to do fine with less sleep, research suggests around 7–10 hours of sleep per night is best for long-term health and your testosterone.

There are three categories of healthy fat. Number one is healthy saturated fat. The truth about saturated fat is it’s actually good for you if it’s the proper kind. Healthy saturated fat is found in coconut oil and raw, fermented dairy products like goat milk kefir, yogurt, or raw goat or sheep milk cheese. However, avoid conventional dairy because it will actually damper your testosterone.

When you're under a lot of stress, your body releases high levels of the stress hormone cortisol. This hormone actually blocks the effects of testosterone,6 presumably because, from a biological standpoint, testosterone-associated behaviors (mating, competing, aggression) may have lowered your chances of survival in an emergency (hence, the "fight or flight" response is dominant, courtesy of cortisol).
Hooper, D. R., Kraemer, W. J., Saenz, C., Schill, K. E., Focht, B. C., Volek, J. S. … Maresh, C. M. (2017, July). The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition [Abstract]. European Journal of Applied Physiology, 117(7), 1349–1357. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28470410

This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
When you're under a lot of stress, your body releases high levels of the stress hormone cortisol. This hormone actually blocks the effects of testosterone,6 presumably because, from a biological standpoint, testosterone-associated behaviors (mating, competing, aggression) may have lowered your chances of survival in an emergency (hence, the "fight or flight" response is dominant, courtesy of cortisol).

Dr. Wyne, in Houston, said, "When I hear a catchy little phrase, or someone is trying to get us to use a drug that is not based on clinical data, the cynical part of me asks where did it come from." She added, "There is a very important role for testosterone replacement therapy. It's wonderful that we have all these options, but we need to be using them appropriately, in a safe and efficacious manner."


Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
^ Jump up to: a b Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S (April 2017). "Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in the United States and Europe". The Journal of Clinical Endocrinology and Metabolism. 102 (4): 1161–1173. doi:10.1210/jc.2016-2935. PMC 5460736. PMID 28324103.

Zinc plays a variety of roles in regulating the functions of enzymes and chemicals as well as your immune system. Zinc is also a potent antioxidant and can reduce the frequency of illnesses. Studies show that zinc may actually increase testosterone production. Large doses of zinc have actually been found to inhibit aromatase, thus reducing estrogen levels and increasing the effects of testosterone.
February 22, 2018 - Since our last review, the manufacturers of two of our top picks have gone out of business, and some new testosterone boosters have entered the arena. We’ve updated this review to evaluate the current field of testosterone supplements, as well as beef up analysis on what kind of results you can expect from t-boosters. Our only current top pick, Beast Sports Nutrition, is a new player in the industry that contains all four of the ingredients with studies showing a positive effect on testosterone.
Every ingredient can be harmful when taken in significant quantities (we go more into that below), so we pored over each booster’s ingredient list to make sure that they weren’t serving up an overdose. In particular, we took a close look at magnesium and zinc, which have enough scientific background behind them to offer hard upper limits on how much you can safely consume.
This causes your body to burn fat for the next 36 hours to replace your body’s vital energy stores. It addition to increasing your T-levels, it can help burn between 3–9 times more fat, lower your resting heart rate, lower blood pressure, keep your brain young by increasing circulation, and aids in detoxification by stimulating the lymphatic system.
Does the diminution that age brings with it in both total and bioavailable T have any clinical significance? This question leads us to the theme of this paper, “The Many Faces of Testosterone”. If testosterone were simply a “sex hormone” involved only with sexual desire and arousal we might tend to dismiss testosterone treatment in the aging man as merely a “life-style” therapy without any substantive basis for broad physiological necessity. The fact is, however, that the sexual attributes of testosterone are the least of its physiological necessities and that testosterone has a broad spectrum of demonstrated physiological functions as well as a wide variety of physiological and pathophysiological associations about which we are just learning.

These results have been echoed in clinical trials. A meta-analysis of 24 RCTs looked at weight loss caused by diet or bariatric surgery:[22] In the diet studies, the average 9.8% weight loss was linked to a testosterone increase of 2.9 nmol/L (84 ng/dL). In the bariatric-surgery studies, the average 32% weight loss was linked to a testosterone increase of 8.7 nmol/L (251 ng/dL).
Like other steroid hormones, testosterone is derived from cholesterol (see figure).[124] The first step in the biosynthesis involves the oxidative cleavage of the side-chain of cholesterol by cholesterol side-chain cleavage enzyme (P450scc, CYP11A1), a mitochondrial cytochrome P450 oxidase with the loss of six carbon atoms to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17α-hydroxylase/17,20-lyase) enzyme in the endoplasmic reticulum to yield a variety of C19 steroids.[125] In addition, the 3β-hydroxyl group is oxidized by 3β-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17β-hydroxysteroid dehydrogenase to yield testosterone.
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
Individuals with metabolic syndrome are at increased risk for developing coronary artery disease and diabetes mellitus. Predicting who might develop the metabolic syndrome would allow preventive measures to be taken in addition to weight control and other lifestyle modifications such as cessation of smoking and increased exercise. It is known that with decreasing testosterone availability in aging males there is an increase in fat mass and decrease in lean body mass (van den Beld et al 2000), there are disorders of insulin and glucose metabolism (Haffner et al 1996) and dyslipidemia (Tsai et al 2004). Kupelian and colleagues (2006) in analyzing data from the Massachusetts Male Aging Study demonstrated that men with low levels of testosterone, sex hormone-binding globulin, or clinical androgen deficiency, especially men with a BMI of greater than 25, were at increased risk of developing the metabolic syndrome and hence, diabetes mellitus and/or coronary artery disease.
If you're a man who's experiencing symptoms such as decreased sex drive, erectile dysfunction, depressed mood, and difficulties with concentration and memory, and you think low testosterone may be to blame, you can have your levels tested. Since testosterone levels fluctuate throughout the day, you'll probably need more than a blood test to get a true picture of your levels.
Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.
So what is this Big T, anyway? Derived from cholesterol, testosterone is a steroid hormone—called an androgen—that causes the development and maintenance of masculine characteristics. It's mainly secreted by the testicles in males, although the adrenal cortex and ovaries in females also secrete testosterone—though only about one-tenth the amount as in healthy males.
Regardless of the method of testosterone treatment chosen, patients will require regular monitoring during the first year of treatment in order to monitor clinical response to testosterone, testosterone levels and adverse effects, including prostate cancer (see Table 2). It is recommended that patients should be reviewed at least every three months during this time. Once treatment has been established, less frequent review is appropriate but the care of the patient should be the responsibility of an appropriately trained specialist with sufficient experience of managing patients treated with testosterone.
When testosterone and endorphins in ejaculated semen meet the cervical wall after sexual intercourse, females receive a spike in testosterone, endorphin, and oxytocin levels, and males after orgasm during copulation experience an increase in endorphins and a marked increase in oxytocin levels. This adds to the hospitable physiological environment in the female internal reproductive tract for conceiving, and later for nurturing the conceptus in the pre-embryonic stages, and stimulates feelings of love, desire, and paternal care in the male (this is the only time male oxytocin levels rival a female's).[citation needed]
Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
The bones and the brain are two important tissues in humans where the primary effect of testosterone is by way of aromatization to estradiol. In the bones, estradiol accelerates ossification of cartilage into bone, leading to closure of the epiphyses and conclusion of growth. In the central nervous system, testosterone is aromatized to estradiol. Estradiol rather than testosterone serves as the most important feedback signal to the hypothalamus (especially affecting LH secretion).[115] In many mammals, prenatal or perinatal "masculinization" of the sexually dimorphic areas of the brain by estradiol derived from testosterone programs later male sexual behavior.[116]
The sexual hormone can encourage fair behavior. For the study, subjects took part in a behavioral experiment where the distribution of a real amount of money was decided. The rules allowed both fair and unfair offers. The negotiating partner could subsequently accept or decline the offer. The fairer the offer, the less probable a refusal by the negotiating partner. If no agreement was reached, neither party earned anything. Test subjects with an artificially enhanced testosterone level generally made better, fairer offers than those who received placebos, thus reducing the risk of a rejection of their offer to a minimum. Two later studies have empirically confirmed these results.[71][72][73] However men with high testosterone were significantly 27% less generous in an ultimatum game.[74] The Annual NY Academy of Sciences has also found anabolic steroid use which increase testosterone to be higher in teenagers, and this was associated with increased violence.[75] Studies have also found administered testosterone to increase verbal aggression and anger in some participants.[76]
Dr. Adriane Fugh-Berman, associate professor of pharmacology and director of the industry watchdog group PharmedOut.org at Georgetown University School of Medicine, calls this kind of direct-to-consumer pharmaceutical advertising "evil." She likened the efforts to sell TRT to earlier campaigns to push hormone replacement therapy for post-menopausal women. "They stole the playbook," she said. "This hormone is being thrown around like sugar water."
The rise in testosterone levels during competition predicted aggression in males but not in females.[86] Subjects who interacted with hand guns and an experimental game showed rise in testosterone and aggression.[87] Natural selection might have evolved males to be more sensitive to competitive and status challenge situations and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.[88] Testosterone produces aggression by activating subcortical areas in the brain, which may also be inhibited or suppressed by social norms or familial situations while still manifesting in diverse intensities and ways through thoughts, anger, verbal aggression, competition, dominance and physical violence.[89] Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.[90] Testosterone specific structural brain characteristic can predict aggressive behaviour in individuals.[91]
That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.

A previous meta-analysis has confirmed that treatment of hypogonadal patients with testosterone improves erections compared to placebo (Jain et al 2000). A number of studies have investigated the effect of testosterone levels on erectile dysfunction in normal young men by inducing a hypogonadal state, for example by using a GnRH analogue, and then replacing testosterone at varying doses to produce levels ranging from low-normal to high (Buena et al 1993; Hirshkowitz et al 1997). These studies have shown no significant effects of testosterone on erectile function. These findings contrast with a similar study conducted in healthy men aged 60–75, showing that free testosterone levels achieved with treatment during the study correlate with overall sexual function, including morning erections, spontaneous erections and libido (Gray et al 2005). This suggests that the men in this older age group are particularly likely to suffer sexual symptoms if their testosterone is low. Furthermore, the severity of erectile dysfunction positively correlates with lower testosterone levels in men with type 2 diabetes (Kapoor, Clarke et al 2007).
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
Prolactin is suppressed by dopamine activity. Since supplementing L-DOPA suppresses prolactin (by increasing dopamine activity), supplementing L-DOPA would increase testosterone if prolactin was abnormally high. The average, healthy male does not have elevated prolactin (unless he’s on steroids), so supplementing with L-DOPA will not increase your testosterone levels.
In non-human primates, it may be that testosterone in puberty stimulates sexual arousal, which allows the primate to increasingly seek out sexual experiences with females and thus creates a sexual preference for females.[39] Some research has also indicated that if testosterone is eliminated in an adult male human or other adult male primate's system, its sexual motivation decreases, but there is no corresponding decrease in ability to engage in sexual activity (mounting, ejaculating, etc.).[39]
“I have seen them work for people,” says GP and hormonal therapy expert at Omniya London, Dr Sohere Roked. “I think sometimes people feel that it’s not a good thing to do or they’re just wasting their time taking it, but I have seen people who combine that with a good diet and exercise and have noticed a change in their physique, their energy, their mood, and the sort of things that testosterone would naturally help.”
It is a natural hormone present in the body known as Dehydroepiandrosterone (DHEA). It reduces the estrogen levels while boosting testosterone levels. It has been in use since so long to raise testosterone levels. Among all supplements, it is one of the famous and many researchers are working on it to tell how it stimulates testosterone production. It is banned for athletes and professional players.
There is also solid research indicating that if you take astaxanthin in combination with saw palmetto, you may experience significant synergistic benefits. A 2009 study published in the Journal of the International Society of Sports Nutrition found that an optimal dose of saw palmetto and astaxanthin decreased both DHT and estrogen while simultaneously increasing testosterone.6 Also, in order to block the synthesis of excess estrogen (estradiol) from testosterone there are excellent foods and plant extracts that may help to block the enzyme known as aromatase which is responsible producing estrogen. Some of these include white button mushrooms, grape seed extract and nettles.7
×