We kept it simple, and followed the premise of testosterone boosters: testosterone affects muscle gain, weight loss, and libido, so by increasing the amount of testosterone in the body, we can improve on each of those goals. This meant that we looked for ingredients proven to increase testosterone levels, not ingredients that might increase libido or help build muscle mass independently of testosterone (like having a healthy diet and feeling good about yourself). In addition, we dove deep into the specific ingredient lists of our finalists and cross-checked them against WebMD and the National Institutes of Health (NIH) database to make sure that they did not contain ingredients known to be harmful.
For people who are worried about low or high testosterone, a doctor may perform a blood test to measure the amount of the hormone in the patient's blood. When doctors find low-T, they may prescribe testosterone therapy, in which the patient takes an artificial version of the hormone. This is available in the following forms: a gel to be applied to the upper arms, shoulders or abdomen daily; a skin patch put on the body or scrotum twice a day; a solution applied to the armpit; injections every two or three weeks; a patch put on the gums twice a day; or implants that last four to six months.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Dr. Anthony’s Notes: Magnesium is best to take at night as it is relaxing. Supplemental magnesium can cause loose stools at high doses. If you experience loose stools, you'll know to back off your dose. This is a really useful supplement for overall health – not JUST for testosterone. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources: pumpkin seeds, spinach, swiss chard, black beans, cashews, quinoa, quality whole gains like Ezekiel bread How To Take Magnesium: 200-400mg capsule form at night before bed.
Studies conducted in rats have indicated that their degree of sexual arousal is sensitive to reductions in testosterone. When testosterone-deprived rats were given medium levels of testosterone, their sexual behaviors (copulation, partner preference, etc.) resumed, but not when given low amounts of the same hormone. Therefore, these mammals may provide a model for studying clinical populations among humans suffering from sexual arousal deficits such as hypoactive sexual desire disorder.[37]
Testosterone treatment is unequivocally needed in classical hypogonadism for reasons discussed in subsequent subsections. In classical hypogonadism, testosterone production is usually clearly below the lower limit of normal and patients are highly symptomatic; the various symptoms are easily related to the deficiencies in various bodily systems where testosterone action is important. Symptoms of testosterone deficiency are listed in Table 2. A few prominent causes of classical hypogonadism are listed in Table 3.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
In a placebo-controlled study, 27 Division II football players received either a placebo or a ZMA supplement for a total of seven weeks during their scheduled spring practice. At the end of the seven weeks, the players taking the ZMA supplement had a 30 percent increase in testosterone, while the placebo group had a 10 percent decrease. The ZMA group also saw an 11.6 percent increase in strength, compared to only 4.6 percent in the placebo group.[7]
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).

That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.
Does zinc provide testosterone benefits? The answer is, yes. It is an essential mineral which is used in many processes within the body and has a similar role like vitamin D. Men who have a deficiency of zinc may suffer from low testosterone levels but taking zinc supplements can help them to improve the testosterone levels. Zinc deficiency is an essential factor in infertility because it also reduces the sperm count, but with supplements, the sperm count increases along with improvement in testosterone levels. It also helps to recover from high-intensity interval training because that also cause the decline in testosterone levels.

Zinc is little more of a nice-to-have ingredient than a must-have. It’s on our radar as an ingredient that possibly boosts testosterone levels, and while we couldn’t find enough supporting evidence that taking zinc would increase natural testosterone, low zinc levels have been connected to infertility. A low zinc level is also possibly a sign of hypogonadism. The closest support we found is in a study which found that people recovered from nutritional deficiency-related problems more quickly if they took a zinc supplement than those who did not. Zinc is available in many foods, such as oysters, fortified breakfast cereals, and red meat.
Reordering. My husband has been very tired (lazy), but unable to sleep, and quickly started gaining a belly. I give him his vitamins so he never knows what he is taking. Only 3 days after taking this, he played an entire soccer game and commented on how much more energy he had and how he just feels better all around. I then told him what he was taking. He has continued taking and he is like his old self again. His energy has not only come back on the soccer field, but in other areas, as well.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Dr. Wyne, in Houston, said, "When I hear a catchy little phrase, or someone is trying to get us to use a drug that is not based on clinical data, the cynical part of me asks where did it come from." She added, "There is a very important role for testosterone replacement therapy. It's wonderful that we have all these options, but we need to be using them appropriately, in a safe and efficacious manner."
Increase testosterone if you’re an adult with abnormally low levels. Under most circumstances, adults who have been medically diagnosed with low testosterone levels can safely increase their levels, and natural methods can be some of the healthiest ways to do so. That being said, you should avoid intentionally increasing your testosterone if you are still an adolescent or if you’re an adult with normal or undiagnosed levels.
Keep in mind that you can use virtually any type of equipment you want for this – an elliptical machine, a treadmill, swimming, even sprinting outdoors (although you will need to do this very carefully to avoid injury) -- as long as you're pushing yourself as hard as you can for 30 seconds. But do be sure to stretch properly and start slowly to avoid injury. Start with two or three repetitions and work your way up, don't expect to do all eight repetitions the first time you try this, especially if you are out of shape.
TT may help you but it may have adverse (harmful) results. (See discussion of these side effects below.) The Federal Drug Administration (FDA) has said that testosterone drug labels should state that there is a risk for heart disease and stroke for some men using testosterone products. All men should be checked for heart disease and stroke before, and periodically while on, TT. The AUA however, on careful review of evidence-based peer review literature, has stated that there is no strong evidence that TT either increases or decreases the risk of cardiovascular events.
In order to discuss the biochemical diagnosis of hypogonadism it is necessary to outline the usual carriage of testosterone in the blood. Total serum testosterone consists of free testosterone (2%–3%), testosterone bound to sex hormone binding globulin (SHBG) (45%) and testosterone bound to other proteins (mainly albumin −50%) (Dunn et al 1981). Testosterone binds only loosely to albumin and so this testosterone as well as free testosterone is available to tissues and is termed bioavailable testosterone. Testosterone bound to SHBG is tightly bound and is biologically inactive. Bioavailable and free testosterone are known to correlate better than total testosterone with clinical sequelae of androgenization such as bone mineral density and muscle strength (Khosla et al 1998; Roy et al 2002). There is diurnal variation in serum testosterone levels with peak levels seen in the morning following sleep, which can be maintained into the seventh decade (Diver et al 2003). Samples should always be taken in the morning before 11 am to allow for standardization.
Carbs play a big part in determining your Testosterone levels. Let's start with what to avoid. First, research shows that a large serving of sugar (75g of glucose), decreased Testosterone levels by as much as 25%! (25 & 26). I know this is a pretty extreme dosage, but you may want to avoid massive servings of sugar! Also, men who have Metabolic syndrome have lower Testosterone levels (27). Metabolic syndrome is often brought about by chronic high blood sugar which leads to insulin resistance.
Sprinting has been shown numerous times that it has positive effects on testosterone levels. One 2011 study (ref 84) looked at weightlifters who performed 4x35m sprints twice a week. In contrast to the control group (who continued lifting but did not sprint), it was found that “After the 4-week training program, total testosterone and the total testosterone/cortisol ratio increased significantly in the (sprinters) EXP group”.
If you are very weak, start with resistance bands. This gentle form of strength-training allows you to use a rubber strap to train weak muscles before lifting actual weights.[5] Do this 2 to 3 times per week for the first 3 to 4 weeks. If you have a joint or back problem, you may want to graduate to stronger bands and stick to this form of strength training.
Binge drinking on the other hand does impact Testosterone levels – especially on a short term basis. Two studies (22 & 23) show that large acute quantities of alcohol consumption in a short period led to decreases in Testosterone levels by a whooping 20-23% after 24hours! Note however this is drinking to extreme excess! Likewise, chronic alcohol abuse is known to reduce testosterone more notably (as seen in alcoholics).
Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]

You’re probably most familiar with testosterone as being the sex hormone responsible for defining “manhood.” And, yes, it does. However, proper levels of this key hormone are also necessary to stimulate sexual desire, increase libido, heighten arousal and ensure sexual satisfaction for both men and women. It’s also necessary to maintaining the following:
Starting around the age of 30, men’s testosterone production begins to decline and only continues to go down as you get older. Whether you simply want to build lean muscle or ensure that you always have healthy levels of testosterone, there are a wide range of dietary supplements that can help to increase your testosterone levels. Let’s take a look at some of the most popular ingredients to boost your testosterone. 
A 2010 study published in the journal Hormones and Behavior first suggested this when researchers evaluated the “dual-hormone hypothesis” clinically. (11) They discovered that when cortisol is elevated, testosterone responds by elevating as well but soon after bottoms out at a much lower level than before cortisol kicked in! That means you want to find ways to relieve stress to keep your testosterone levels up.
D-Aspartic acid is a natural amino acid involved in the synthesis and release of testosterone, which research shows can be used as a testosterone booster for infertile men. One 90-day study gave D-Aspartic acid to men with impaired sperm production, and found their sperm count rose from 8.2 million sperm per ml to 16.5 million sperm per ml, more than a 100 per cent increase.
Withania Somnifera is another name for Ashwagandha which is an ancient herb used as a medicine. It is an adaptogen because it helps the body to handle anxiety and stress. It improves T levels along with increasing sperm production. Other than improvement in sexual performance it also helps in fat loss, strength, and stamina. It reduces the stress by reducing the output of the cortisol hormone, which acts antagonist to testosterone. This reduction helps to body to trigger the testosterone production.
It is important not to use any DHEA product without the supervision of a professional. Find a qualified health care provider who will monitor your hormone levels and determine if you require supplementation. Rather than using an oral hormone supplementation, I recommend trans-mucosal (vagina or rectum) application. Skin application may not be wise, as it makes it difficult to measure the dosage you receive. This may cause you to end up receiving more than what your body requires.
×