The second theory is similar and is known as "evolutionary neuroandrogenic (ENA) theory of male aggression".[78][79] Testosterone and other androgens have evolved to masculinize a brain in order to be competitive even to the point of risking harm to the person and others. By doing so, individuals with masculinized brains as a result of pre-natal and adult life testosterone and androgens enhance their resource acquiring abilities in order to survive, attract and copulate with mates as much as possible.[78] The masculinization of the brain is not just mediated by testosterone levels at the adult stage, but also testosterone exposure in the womb as a fetus. Higher pre-natal testosterone indicated by a low digit ratio as well as adult testosterone levels increased risk of fouls or aggression among male players in a soccer game.[80] Studies have also found higher pre-natal testosterone or lower digit ratio to be correlated with higher aggression in males.[81][82][83][84][85]
^ Jump up to: a b Sapienza P, Zingales L, Maestripieri D (September 2009). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398.
However, if you have normal testosterone levels and are looking for a boost, for strength gaining purposes, then D-Aspartic acid use may prove less fruitful. A study published in Nutrition Research showed that when the booster was given to men who resistance trained four times a week, their body composition and muscle strength was no different to men who took part in resistance training without the aid of D-Aspartic acid.
We kept it simple, and followed the premise of testosterone boosters: testosterone affects muscle gain, weight loss, and libido, so by increasing the amount of testosterone in the body, we can improve on each of those goals. This meant that we looked for ingredients proven to increase testosterone levels, not ingredients that might increase libido or help build muscle mass independently of testosterone (like having a healthy diet and feeling good about yourself). In addition, we dove deep into the specific ingredient lists of our finalists and cross-checked them against WebMD and the National Institutes of Health (NIH) database to make sure that they did not contain ingredients known to be harmful.
Another effect that can limit treatment is polycythemia, which occurs due to various stimulatory effects of testosterone on erythropoiesis (Zitzmann and Nieschlag 2004). Polycythemia is known to produce increased rates of cerebral ischemia and there have been reports of stroke during testosterone induced polycythaemia (Krauss et al 1991). It is necessary to monitor hematocrit during testosterone treatment, and hematocrit greater than 50% should prompt either a reduction of dose if testosterone levels are high or high-normal, or cessation of treatment if levels are low-normal. On the other hand, late onset hypogonadism frequently results in anemia which will then normalize during physiological testosterone replacement.

Testosterone is an important enzyme that is most often associated with the process of puberty. However, both men and women have testosterone, and it is responsible for more than just transforming boys into men. Testosterone is also involved in maintaining bone density and regulating the levels of your red blood cells. Testosterone has also been shown to have a positive effect on muscle protein synthesis, essentially meaning that more testosterone can result in bigger muscles.
Popular through the centuries in Ayurvedic healing (a traditional practice of medicine in India) ashwagandha is what is known as an "adaptogen." This means the body may be able to use it to help adapt to stressors. While many people supplement with it for reducing cortisol, anxiety, and fatigue levels, ashwagandha also holds relevance for us here with potential testosterone boosting benefits.[8]
However, testosterone is only one of many factors that aid in adequate erections. Research is inconclusive regarding the role of testosterone replacement in the treatment of erectile dysfunction. In a review of studies that looked at the benefit of testosterone in men with erection difficulties, showed no improvement with testosterone treatment. Many times, other health problems play a role in erectile difficulties. These can include:
In compliance with the FTC guidelines, please assume the following about links and posts on this site: Many of the links on DrJockers.com are affiliate links of which I receive a small commission from sales of certain items, but the price is the same for you. If I post an affiliate link to a product, it is something that I personally use, support and would recommend without an affiliate link. Learn More

If you are serious about losing weight, you have got to strictly limit the amount of processed sugar in your diet, as evidence is mounting that excess sugar, and fructose in particular, is the primary driving factor in the obesity epidemic. So cutting soda from your diet is essential, as is limiting fructose found in processed foods, fruit juice, excessive fruit and so-called "healthy" sweeteners like agave.
We all remember the time during our teens where our body underwent majority of its changes that led us into adulthood. As far as testosterone levels go, this period of time is where the production of this hormone peaked. Testosterone levels during these teenage years remain high and consistent, and therefore it is not advisable to use a testosterone boosting supplement during this time. This is because, Natural Testosterone Boosters work by encouraging your body to increase it;s natural levels back to their maximum capacity. If your body is already producing it’s maximum amount of Testosterone, these products will be ineffective for you. You should be prioritising quality, intense training sessions with adequate nutrition, rich in protein and carbohydrates to elicit growth and repair.

Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).

Prolactin is suppressed by dopamine activity. Since supplementing L-DOPA suppresses prolactin (by increasing dopamine activity), supplementing L-DOPA would increase testosterone if prolactin was abnormally high. The average, healthy male does not have elevated prolactin (unless he’s on steroids), so supplementing with L-DOPA will not increase your testosterone levels.
Although, most studies on TT have been conducted on animals, the results appear promising. One study that looked at sexually sluggish male albino rats found that having been given extracts of TT, the rats "mount frequency, intromission frequency, and penile erection index" all increased, while "mount latency, intromission latency, and ejaculatory latency" all decreased. Who said romance was dead?
On review of the patient’s history, he was found to have undergone laboratory tests before starting to use the aforementioned testosterone booster product. All blood parameters (testosterone hormone and full chemical profile) before product intake were in the normal range. A physical examination that included blood pressure and pulse assessments showed nothing out of the ordinary, and the man appeared to be in good condition before product consumption. After that medical checkup, the athlete began to consume the product for 42 continuous days divided into 2 cycles (each cycle comprised 24 days). The daily dose was a single pack of Universal Nutrition Animal Stak (ingredients are listed in Table 1), following the exact direction of the manufacturing company hoping to get the best results.
The effects of testosterone in humans and other vertebrates occur by way of multiple mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors.[109][110] Androgens such as testosterone have also been found to bind to and activate membrane androgen receptors.[111][112][113]
The rise in testosterone levels during competition predicted aggression in males but not in females.[86] Subjects who interacted with hand guns and an experimental game showed rise in testosterone and aggression.[87] Natural selection might have evolved males to be more sensitive to competitive and status challenge situations and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.[88] Testosterone produces aggression by activating subcortical areas in the brain, which may also be inhibited or suppressed by social norms or familial situations while still manifesting in diverse intensities and ways through thoughts, anger, verbal aggression, competition, dominance and physical violence.[89] Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.[90] Testosterone specific structural brain characteristic can predict aggressive behaviour in individuals.[91]
As blood levels of testosterone increase, this feeds back to suppress the production of gonadotrophin-releasing hormone from the hypothalamus which, in turn, suppresses production of luteinising hormone by the pituitary gland. Levels of testosterone begin to fall as a result, so negative feedback decreases and the hypothalamus resumes secretion of gonadotrophin-releasing hormone. 
Testosterone functions within the brain. There are several lines of evidence for this: there are androgen receptors within the brain; testosterone is converted to both dihydrotestosterone (DHT) and estradiol by the actions of 5-α-reductase and aromatase respectively in the brain; steroid hormones promote neuronal cell growth and survival (Azad et al 2003). Testosterone enhances cerebral perfusion in hypogonadal men and that perfusion takes place specifically in Brodman areas 8 and 24, regions of the brain that are concerned with: strategic planning, higher motor action, cognitive behaviors, emotional behavior, generalized emotional reaction, wakefulness and memory (Greenlee 2000; Azad et al 2003). Studies of cognition demonstrate that older men with higher levels of free testosterone index (a surrogate measure of bioavailable testosterone) have better scores in tests of: visual memory, verbal memory, visuospatial functions and visuomotor scanning. Hypogonadal men have lower scores in tests of memory, visuospatial function, with a faster decline in visual memory (Moffat et al 2002). In a very small, short term placebo-controlled study hypogonadal men with Alzheimer’s Disease (AD) treated with testosterone demonstrated a modest improvement in a cognition assessment score in AD (Tan and Pu 2003).
A bunch of red grapes a day can help in giving your T-levels a boost. The skin of this fruit contains Resveratrol, which gives you more action and hardier sperm. It has been claimed that 500mg of Resveratrol – which is approximately the amount found in 5 to 10g of grape skins – is effective in increasing the T-levels and improving sperm’s ability to swim (epididymal motility).

The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
Studies conducted in rats have indicated that their degree of sexual arousal is sensitive to reductions in testosterone. When testosterone-deprived rats were given medium levels of testosterone, their sexual behaviors (copulation, partner preference, etc.) resumed, but not when given low amounts of the same hormone. Therefore, these mammals may provide a model for studying clinical populations among humans suffering from sexual arousal deficits such as hypoactive sexual desire disorder.[37]
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).
^ Butenandt A, Hanisch G (1935). "Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17)-one-(3) (Testosterone); um Weg zur Darstellung des Testosterons auf Cholesterin (Vorlauf Mitteilung). [The conversion of dehydroandrosterone into androstenol-(17)-one-3 (testosterone); a method for the production of testosterone from cholesterol (preliminary communication)]". Chemische Berichte (in German). 68 (9): 1859–62. doi:10.1002/cber.19350680937.

Clinical trials of the effect of testosterone on glucose metabolism in men have occurred in diabetic and non-diabetic populations. Data specific to aging males is not available. A series of studies investigated the effects of testosterone or dihydrotestosterone given for 6 weeks or 3 months to middle aged, non-diabetic obese men (Marin, Holmang et al 1992; Marin, Krotkiewski et al 1992; Marin et al 1993). It was found that physiological treatment doses led to improved insulin resistance, as measured by the gold standard technique using a euglycemic clamp and/or serum glucose and insulin responses during glucose tolerance test. These improvements were associated with decreased central obesity, measured by computered tomography (CT) or waist-hip ratio, without reduced total fat mass. Insulin resistance improved more with testosterone than dihydrotestosterone treatment and beneficial effects were greater in men with lower baseline testosterone levels. Increasing testosterone levels into the supraphysiological range lead to decreased glucose tolerance.


In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][151] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][151] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][151] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[153][154] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[152]


As you cut these dietary troublemakers from your meals, you need to replace them with healthy substitutes like vegetables and healthy fats (including natural saturated fats!). Your body prefers the carbohydrates in micronutrient-dense vegetables rather than grains and sugars because it slows the conversion to simple sugars like glucose, and decreases your insulin level. When you cut grains and sugar from your meals, you typically will need to radically increase the amount of vegetables you eat, as well as make sure you are also consuming protein and healthy fats regularly.
Few of the most often asked questions I get are: what do I eat to maintain high testosterone levels, and if I have a specific list of recommended foods that increase testosterone naturally. While there are many food related posts scattered around this blog, I’ve never really made an all-around post about what I would put into a high T pantry. Until now.
If you want to continue exploring the cool topic of eating foods to improve testosterone. I have some tips for you. First, you should read the post about the testosterone boosting recipes to find how you can cook the foods that you have just read about here. Finally, now that you know the best foods to increase testosterone, it is also crucial that you know which foods to avoid to protect your testosterone.

Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated 1 Mar 2019), Cerner Multum™ (updated 1 Mar 2019), Wolters Kluwer™ (updated 28 Feb 2019) and others. Refer to our editorial policy for content sources and attributions.
The chemical synthesis of testosterone from cholesterol was achieved in August that year by Butenandt and Hanisch.[183] Only a week later, the Ciba group in Zurich, Leopold Ruzicka (1887–1976) and A. Wettstein, published their synthesis of testosterone.[184] These independent partial syntheses of testosterone from a cholesterol base earned both Butenandt and Ruzicka the joint 1939 Nobel Prize in Chemistry.[182][185] Testosterone was identified as 17β-hydroxyandrost-4-en-3-one (C19H28O2), a solid polycyclic alcohol with a hydroxyl group at the 17th carbon atom. This also made it obvious that additional modifications on the synthesized testosterone could be made, i.e., esterification and alkylation.

Reordering. My husband has been very tired (lazy), but unable to sleep, and quickly started gaining a belly. I give him his vitamins so he never knows what he is taking. Only 3 days after taking this, he played an entire soccer game and commented on how much more energy he had and how he just feels better all around. I then told him what he was taking. He has continued taking and he is like his old self again. His energy has not only come back on the soccer field, but in other areas, as well.

b) You can also use supplements to increase testosterone levels in your body. Zinc supplements are important to boost T-levels. Generally, the best source of this nutrient is from foods such as fish, meats, beans, raw milk, yogurt, raw cheese, etc. However, if you are a vegetarian, obtaining sufficient dietary zinc from natural foods alone can be difficult. This is where supplements come in, ensuring that you get the right amount of zinc required to give your testosterone levels a good boost.
If testosterone deficiency occurs during fetal development, then male characteristics may not completely develop. If testosterone deficiency occurs during puberty, a boy’s growth may slow and no growth spurt will be seen. The child may have reduced development of pubic hair, growth of the penis and testes, and deepening of the voice. Around the time of puberty, boys with too little testosterone may also have less than normal strength and endurance, and their arms and legs may continue to grow out of proportion with the rest of their body.
×