Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.
The biggest problem with supplementing your testosterone levels is it can shut off your own natural production and it can also permanently lower your sperm count. Taking testosterone boosters may also leave you open to some of the other unwanted side effects, like acne, male pattern baldness, mood swings and aggressive behaviour. To give yourself the best possible chance of avoiding these side effects, you need to see an expert before going for boosters.
Among my favorite stress management tools is the Emotional Freedom Technique (EFT), a method similar to acupuncture but without the use of needles. EFT is known to eliminate negative behavior and instill a positive mentality. Always bear in mind that your emotional health is strongly linked to your physical health, and you have to pay attention to your negative feelings as much as you do to the foods you eat.

Clinical trials of the effect of testosterone on glucose metabolism in men have occurred in diabetic and non-diabetic populations. Data specific to aging males is not available. A series of studies investigated the effects of testosterone or dihydrotestosterone given for 6 weeks or 3 months to middle aged, non-diabetic obese men (Marin, Holmang et al 1992; Marin, Krotkiewski et al 1992; Marin et al 1993). It was found that physiological treatment doses led to improved insulin resistance, as measured by the gold standard technique using a euglycemic clamp and/or serum glucose and insulin responses during glucose tolerance test. These improvements were associated with decreased central obesity, measured by computered tomography (CT) or waist-hip ratio, without reduced total fat mass. Insulin resistance improved more with testosterone than dihydrotestosterone treatment and beneficial effects were greater in men with lower baseline testosterone levels. Increasing testosterone levels into the supraphysiological range lead to decreased glucose tolerance.
One long-term study observed that those who slept only four hours per night had borderline deficient levels. Other long-term studies support this. One study calculated that for every additional hour of sleep you get, testosterone levels rise 15% higher, on average. Although some people seem to do fine with less sleep, research suggests around 7–10 hours of sleep per night is best for long-term health and your testosterone.
It is now well-established that elderly men with type 2 diabetes mellitus have reduced levels of testosterone (Barrett-Connor 1992; Betancourt-Albrecht and Cunningham 2003). It is known, however, that obese men and diabetic men have reduced levels of SHBG (Barrett-Connor 1990) which could account for the lower total testosterone levels found in diabetic men. Dhindsa et al (2004) studied 103 male patients who had type 2 diabetes mellitus using free testosterone (done by equilibrium dialysis) or calculated free testosterone which takes SHBG levels into account. Of the 103 patients, 57 had free testosterone by equilibrium dialysis and of these, 14 (25%) had a free T below 0.174 nmol/L and were considered hypogonadal. Using a total testosterone of 10.4 nmol/L (300ng/dl) as the lower limit of normal 45 patients (43%) were in the hypogonadal range. They also found that LH and FSH concentrations were significantly lower in the hypogonadal group. The authors thus concluded that hypogonadotropic hypogonadism was a common finding in type 2 diabetes irrespective of glycemic control, duration of disease or the presence of complications of diabetes or obesity.
I was reading in the university health news daily website that a study performed by researchers at the University of Texas M.D. Anderson Cancer Center found that men with prostate cancer who ate 3 tablespoons of milled or ground flax seeds each day had decreased prostate cancer cell proliferation compared to similar men who did not eat flax seeds. According to the American Cancer Society, men who supplement their diets with flax seed have lower PSA levels and slower growth of benign as well as cancerous prostate cells.
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
Male hypogonadism is a clinical syndrome caused by a lack of androgens or their action. Causes of hypogonadism may reflect abnormalities of the hypothalamus, pituitary, testes or target tissues. Increases in the amount of testosterone converted to estrogen under the action of the enzyme aromatase may also contribute to hypogonadism. Most aspects of the clinical syndrome are unrelated to the location of the cause. A greater factor in the production of a clinical syndrome is the age of onset. The development of hypogonadism with aging is known as late-onset hypogonadism and is characterised by loss of vitality, fatigue, loss of libido, erectile dysfunction, somnolence, depression and poor concentration. Hypogonadal ageing men also gain fat mass and lose bone mass, muscle mass and strength.
Attention, memory, and spatial ability are key cognitive functions affected by testosterone in humans. Preliminary evidence suggests that low testosterone levels may be a risk factor for cognitive decline and possibly for dementia of the Alzheimer's type,[100][101][102][103] a key argument in life extension medicine for the use of testosterone in anti-aging therapies. Much of the literature, however, suggests a curvilinear or even quadratic relationship between spatial performance and circulating testosterone,[104] where both hypo- and hypersecretion (deficient- and excessive-secretion) of circulating androgens have negative effects on cognition.
Because of inconclusive or conflicting results of testosterone treatment studies reported in the literature, Rabkin and colleagues (2004) undertook a comparison study among testosterone, the anti-depressant, fluoxetine, and placebo in eugonadal HIV positive men. They found that neither fluoxetine nor testosterone were different from placebo in reducing depression, but that testosterone did have a statistically significant effect in reducing fatigue. It is note-worthy that fatigue was reduced with testosterone treatment even though virtually all the men in the study had testosterone levels within the reference range.
Ten healthy men aged around 24 years old spent 1 week sleeping for 8 hours per night at home, they then spent the next 11 nights in a lab. They slept for 10 hours per night for 3 nights, followed by 8 nights of restricted sleep, when they slept for only 5 hours. Doctors checked their blood every 15 to 30 minutes during the last night that they slept 10 hours, as well as on the sleep-restricted session.
Some of these signs and symptoms can be caused by various underlying factors, including medication side effects, obstructive sleep apnea, thyroid problems, diabetes and depression. It's also possible that these conditions may be the cause of low testosterone levels, and treatment of these problems may cause testosterone levels to rise. A blood test is the only way to diagnose a low testosterone level.
×