This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
We start with plastic. A lot of plastic contains bisphenol A (BPA); BPA is a weak synthetic estrogen. Like many other chemicals used in making plastics, BPA is a hormone disruptor and can block or mimic hormones and how they act in the body (34). If you think you’re safe with BPA plastic, think again. Research shows that BPA free plastic has similar estrogen-like effects on the body.
The testosterone booster pills are effective from 4 to 8 hours. To maintain testosterone levels high during the whole day, you need a multiple daily dosing regimen. 2-times daily dosing still not always can improve hormone production to the greatest extent. 3-4-times daily dosing is the best solution to make your body normalize testosterone synthesis and prevent it from decreasing before you take another pill. Don’t forget that the regularity of daily supplement intake is crucial if you really aspire to give a boost to hormone production.
According to the Mayo Clinic, testosterone therapy can help treat hypogonadism. This condition occurs when the body can’t produce enough testosterone on its own. However, it’s unclear whether supplements can help. A study published in found no scientific reason to prescribe testosterone to men over 65 years of age with normal or low to normal testosterone levels.
Dr. Anthony’s Notes: DHEA is a powerful supplement for testosterone, energy, and overall well-being in our older Fit Fathers. A small dose of 25-50mg/day is enough to exert noticeable benefits. This supplement is over-the-counter. Verdict: this is one of the testosterone supplements that work. How To Take DHEA: Take 25-50mg once per day with food. Special Medical Note: DHEA is a MILD CYP3A4 inhibitor (a liver enzyme that processes MANY very common medications). This is the same isoenzyme that Grapefruit inhibits – albeit DHEA inhibits to a much weaker degree. If you’ve ever heard “don’t eat grapefruit with your Lipitor (cholesterol medication)”… this is the reason why. When we inhibit the CYP3A4 enzyme, more of the medications you're taking circulates (it’s not metabolized as fast). Check with your doctor for medication interactions before using DHEA.

There are a lot of test booster blends out there. A lot of them are junk. I have tried to cover the most effective herbs above. As always, I recommend doing your own research and experiment to see if you notice an effect. If you would like one easy herbal solution I recommend starting with Mike Mahlers Aggressive Strength product purely because I have solid anecdotal evidence of its effectiveness. But again, supplements should be seen purely as that - a supplement to a healthy diet, plenty of sleep, hard training with adequate rest.

The Organon group in the Netherlands were the first to isolate the hormone, identified in a May 1935 paper "On Crystalline Male Hormone from Testicles (Testosterone)".[180] They named the hormone testosterone, from the stems of testicle and sterol, and the suffix of ketone. The structure was worked out by Schering's Adolf Butenandt, at the Chemisches Institut of Technical University in Gdańsk.[181][182]
A large number of side-effects have been attributed to testosterone. In our clinical experience, the incidence of significant adverse effects with treatment producing physiological testosterone levels is low, and many side effects attributed to testosterone are mainly relevant to supraphysiological replacement. Some adverse effects are specific to a given mode of delivery and have already been described. Potential adverse effects concerning the prostate have also been discussed and require appropriate monitoring of symptoms, PSA and digital rectal examination. Other tumors which may be androgen responsive include cancer of the breast and primary liver tumors, and these are both contraindications to testosterone treatment
Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.

The ingredients in testosterone supplements may be different. Some testosterone supplements contain zinc and magnesium. They increase testosterone levels in men who exercise. Some other testosterone supplements have hormones like DHEA (dehydroepiandrosterone) and pregnenolone. They help with making new testosterone and may help improve the ability to have an erection. But it doesn't seem to be helpful if the problem with erections is caused by diabetes or nerve disorders. Some testosterone booster supplements contain natural ingredients like herbs and botanicals. They may increase testosterone by increasing a hormone produced by the brain, which signals the testicles to produce more testosterone. In addition, others work by releasing bound testosterone, so it is in a form the body can use. Studies do not provide strong evidence that women benefit from taking these supplements. You need to talk to your doctor or pharmacist before starting a testosterone booster supplement. Discuss your medical history and current prescribed medications, over the counter medications, and any supplements that you are taking. Your doctor or pharmacist can tell you if a testosterone booster supplement is right for you. Once you know if a testosterone booster supplement is right for you, Walgreens has a variety of testosterone booster supplements to choose from and they come in different forms like tablets, capsules or gels.
Even before the study yields its findings, Dr. Swerdloff said a few important points should be emphasized. "I want to make it clear that this is not a made-up disease," he said. "It is well known in younger men that if you have a failure to produce normal testosterone, there are certain signs and symptoms that create a kind of syndrome. Treatment for low testosterone has been documented to be beneficial."
A previous meta-analysis has confirmed that treatment of hypogonadal patients with testosterone improves erections compared to placebo (Jain et al 2000). A number of studies have investigated the effect of testosterone levels on erectile dysfunction in normal young men by inducing a hypogonadal state, for example by using a GnRH analogue, and then replacing testosterone at varying doses to produce levels ranging from low-normal to high (Buena et al 1993; Hirshkowitz et al 1997). These studies have shown no significant effects of testosterone on erectile function. These findings contrast with a similar study conducted in healthy men aged 60–75, showing that free testosterone levels achieved with treatment during the study correlate with overall sexual function, including morning erections, spontaneous erections and libido (Gray et al 2005). This suggests that the men in this older age group are particularly likely to suffer sexual symptoms if their testosterone is low. Furthermore, the severity of erectile dysfunction positively correlates with lower testosterone levels in men with type 2 diabetes (Kapoor, Clarke et al 2007).

Japanese Knotweed (a.k.a Hu Zhang or Polygonum cuspidatum) is highlighted by WebMD as needing more evidence to rate its effectiveness in a number of different areas: like treating constipation and liver or heart disease. They also warn that it can interact poorly with medications that are changed and broken down by the liver, and those that slow blood clotting (anticoagulants and antiplatelets).
"Low T" is anything but inevitable. BMJ's Drug and Therapeutics Bulletin says that around 80 percent of 60-year-old men, and half of those in their eighties, have testosterone levels within the normal range for younger men. It concluded, "The evidence that an age-related reduction in testosterone levels causes specific symptoms is weak." The Food and Drug Administration (FDA) meanwhile has not approved testosterone use to improve strength, athletic performance, physical appearance, or prevent aging. And a 2004 report from the Institute of Medicine ("Testosterone and Aging: Clinical Research Directions") called TRT for age-related testosterone decline a "scientifically unproven method."
Although, most studies on TT have been conducted on animals, the results appear promising. One study that looked at sexually sluggish male albino rats found that having been given extracts of TT, the rats "mount frequency, intromission frequency, and penile erection index" all increased, while "mount latency, intromission latency, and ejaculatory latency" all decreased. Who said romance was dead?
That said, magnesium is one of a few ingredients demonstrated to impact testosterone levels. Researchers at Italy’s University of Palermo found that magnesium improved participants’ anabolic hormone status — including their testosterone levels. In a follow-up study, they confirm that even adjusting for age differences in their participant group, “magnesium was positively associated with total testosterone.” They propose that magnesium supplementation might help improve muscle performance in aging men — a group particularly vulnerable to declining/low testosterone levels. Outside of Italy, researchers at Turkey’s Selçuk University found that magnesium supplementation increased testosterone levels for both athletes and more sedentary men alike.
The sex hormone testosterone is far more than just the stuff of the alpha male's swagger. Though it plays a more significant role in the life of the biological male, it is actually present in both sexes to some degree. Despite popular perceptions that testosterone primarily controls aggression and sex drive—although it does play a role in both of those things—research has shown that individual levels of testosterone are also correlated with our language skills and cognitive abilities. Testosterone occurs in the body naturally, but can be administered as a medication, too: its most common uses are in the treatment of hypogonadism and breast cancer, as well as in hormone therapy for transgender men.
I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
A testicular action was linked to circulating blood fractions – now understood to be a family of androgenic hormones – in the early work on castration and testicular transplantation in fowl by Arnold Adolph Berthold (1803–1861).[177] Research on the action of testosterone received a brief boost in 1889, when the Harvard professor Charles-Édouard Brown-Séquard (1817–1894), then in Paris, self-injected subcutaneously a "rejuvenating elixir" consisting of an extract of dog and guinea pig testicle. He reported in The Lancet that his vigor and feeling of well-being were markedly restored but the effects were transient,[178] and Brown-Séquard's hopes for the compound were dashed. Suffering the ridicule of his colleagues, he abandoned his work on the mechanisms and effects of androgens in human beings.
Few of the most often asked questions I get are: what do I eat to maintain high testosterone levels, and if I have a specific list of recommended foods that increase testosterone naturally. While there are many food related posts scattered around this blog, I’ve never really made an all-around post about what I would put into a high T pantry. Until now.
Few examples: In this 2014 study, a bunch of researchers tested multiple different diets with added Lactobacillus Reuteri on male rodents. In every single case, the addition of L.Reuterii to the feed increased testosterone levels, increased luteinizing hormone levels, increased testicular size & weight, prevented age-related testicular shrinkage, improved semen parameters, and even increased markers of social domination.
Dr. Anthony’s Notes: Correcting a common zinc deficiency can really help testosterone levels. This is why many supplement companies make testosterone boosting supplement stacks called “ZMA” (which stands for Zinc-Magnesium Aspartate) – which is essentially a combination of zinc and magnesium. Do note that LONG TERM high dose zinc supplementation is NOT a good idea (above 30-40mg). Taking too much zinc can lead to a copper deficiency (the two minerals compete for absorption), which causes problems of its own. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources: Beef, lamb, oysters, pumpkin seeds, cashews, quinoa, turkey, chickpeas How To Take Zinc: 30mg once per day with food is ideal. And as we alluded to above in my “notes,” it's often best to take zinc WITH the next supplement on our list…

Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.


Pregnant or nursing women who are exposed to EDCs can transfer these chemicals to their child. Exposure to EDCs during pregnancy affects the development of male fetuses. Fewer boys have been born in the United States and Japan in the last three decades. The more women are exposed to these hormone-disrupting substances, the greater the chance that their sons will have smaller genitals and incomplete testicular descent, leading to poor reproductive health in the long term. EDCs are also a threat to male fertility, as they contribute to testicular cancer and lower sperm count. All of these birth defects and abnormalities, collectively referred to as Testicular Dysgenesis Syndrome (TDS), are linked to the impaired production of testosterone.5
Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.

The testicles produce an enzyme called 11ßHSD-1 which protects your testosterone molecules from the effects cortisol.  During times of prolonged stress and chronically elevated cortisol, there simply is too much cortisol for 11ßHSD-1 to handle.  This results in testosterone molecules being destroyed inside the gonads before they even enter the bloodstream (8, 9).
Fatherhood decreases testosterone levels in men, suggesting that the emotions and behavior tied to decreased testosterone promote paternal care. In humans and other species that utilize allomaternal care, paternal investment in offspring is beneficial to said offspring's survival because it allows the parental dyad to raise multiple children simultaneously. This increases the reproductive fitness of the parents, because their offspring are more likely to survive and reproduce. Paternal care increases offspring survival due to increased access to higher quality food and reduced physical and immunological threats.[60] This is particularly beneficial for humans since offspring are dependent on parents for extended periods of time and mothers have relatively short inter-birth intervals.[61] While extent of paternal care varies between cultures, higher investment in direct child care has been seen to be correlated with lower average testosterone levels as well as temporary fluctuations.[62] For instance, fluctuation in testosterone levels when a child is in distress has been found to be indicative of fathering styles. If a father's testosterone levels decrease in response to hearing their baby cry, it is an indication of empathizing with the baby. This is associated with increased nurturing behavior and better outcomes for the infant.[63]
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
Pregnant or nursing women who are exposed to EDCs can transfer these chemicals to their child. Exposure to EDCs during pregnancy affects the development of male fetuses. Fewer boys have been born in the United States and Japan in the last three decades. The more women are exposed to these hormone-disrupting substances, the greater the chance that their sons will have smaller genitals and incomplete testicular descent, leading to poor reproductive health in the long term. EDCs are also a threat to male fertility, as they contribute to testicular cancer and lower sperm count. All of these birth defects and abnormalities, collectively referred to as Testicular Dysgenesis Syndrome (TDS), are linked to the impaired production of testosterone.5
×